
Institute for System Programming of the Russian Academy of Sciences

Linux Device-Drivers
Verification Challenges

 Alexey Khoroshilov
Vadim Mutilin
Eugene Novikov

The ISoLA 2012 symposium
Heraklion, Crete

15 Oct 2012
Linux Driver Verification Track

Definitions to discuss

Static Analysis:
Trade-Off Triangle

False positives

False negativeTime of analysis

light-weight heavy-weight

error
trace

Static Analysis vs Model
Checking

Static Analysis Model Checking

potential bugs found
 SAFE UNSAFE UNKNOWN

+ 0.5 MLOC per year6,5 MLOC

Linux Device Drivers

● Large and constantly increasing mass of
● uniform
● important
● not too big
● not too complex

● software code

Drivers are similar enough

No floating point,
rarely use recursion

Source code
available

Share memory and privilege
with the rest of the kernel

(*) drivers&sound in 3.6
(*) between 3.1 and 3.6

95% < 15 KLOC
90% < 10 KLOC
80% < 5 KLOC

(*) size of .ko

+ 0.5 MLOC per year6,5 MLOC

Linux Device Drivers

● Large and constantly increasing mass of
● uniform
● important
● not too big
● not too complex

● software code

Drivers are similar enough

No floating point,
rarely use recursion

Source code
available

Share memory and privilege
with the rest of the kernel

(*) drivers&sound in 3.6
(*) between 3.1 and 3.6

95% < 15 KLOC
90% < 10 KLOC
80% < 5 KLOC

(*) size of .ko

Sounds like a dream

But...

But…
(1) No entry point

b1

a2 a2

b2 b2 b2 b2

b1

a2 a2

b2 b2 b2 b2

r

Model Checking World

● Reachability problem

error location

entry point

Device Driver World

No explicit calls to
linking-level init
procedures

Callback interface
procedures registration

module_init(DAC960_init_module);
module_exit(DAC960_cleanup_module);

ret = pci_register_driver(&DAC960_pci_driver)

Linux Kernel

(1) No entry point

● No predefined entry point
● Event handlers via function pointers
● Order limitation

● open() after probe(), but before remove()
● Implicit limitations

● read() only if open() succeed
● and the limitations are specific for each class of

drivers

But…
(1) No entry point (2) Kernel core model

Linux Kernel

(2) Kernel core model

● Boundary of driver
● Kernel core API properties

But…
(1) No entry point

(3) No stable API

(2) Kernel core model

17

This is being written to try to explain why Linux does not have a binary
kernel interface, nor does it have a stable kernel interface. Please
realize that this article describes the in kernel interfaces, not the
kernel to userspace interfaces. The kernel to userspace interface is
the one that application programs use, the syscall interface. That
interface is very stable over time, and will not break.

Executive Summary
You think you want a stable kernel interface, but you really do not, and

you don't even know it. What you want is a stable running driver,
and you get that only if your driver is in the main kernel tree. You
also get lots of other good benefits if your driver is in the main kernel
tree, all of which has made Linux into such a strong, stable, and
mature operating system which is the reason you are using it in the
first place.

Greg Kroah-Hartman

stable_api_nonsense.txt

(3) No stable API

● Environment interface and invariants
● Kernel core model

But…
(1) No entry point

(4) Low level code(3) No stable API

(2) Kernel core model

20

container_of

#define container_of(ptr, type, member) ({ \
const typeof(((type *)0)→member) * __mptr = (ptr); \
(type *)((char *) __mptr − offsetof(type,member));})

struct A {
 int f1;
 char[5] f2;
 struct B f3;
}

struct B *p

container_of(p, struct A, f3)

(4) Low level code

● pointer arithmetics
● casting
● container_of

But…
(1) No entry point

(4) Low level code(3) No stable API

(5) Hardware specific

(2) Kernel core model

Linux Kernel

(5) Hardware specific

● Hardware specific bugs
● Hardware specific invariants

But…
(1) No entry point

(4) Low level code(3) No stable API

(5) Hardware specific

(2) Kernel core model

(6) Concurrency

(6) Concurrency

● Device drivers are significantly asynchronous
● Many bugs appears in concurrent settings only

Commit Analysis

● All patches in stable trees (2.6.35 – 3.0) for
1 year:

● 26 Oct 2010 – 26 Oct 2011
● 1503 patches in device drivers

● Main goal: detect and classify typical bugs

Commit Analysis (2)
 Class # %

1 sync:race 60 17.2%

2 specific:resource 32 9.2%

3 generic:null_ptr_deref 31 8.9%

4 specific:check_params 25 7.2%

5 generic:resource 24 6.9%

6 specific:context 19 5.4%

7 specific:uninit 17 4.9%

8 generic:syntax 14 4.0%

9 specific:lock 12 3.4%

10 sync:deadlock 11 3.2%

11 specific:style 10 2.9%

 Class # %

12 specific:net 10 2.9%

13 specific:usb 9 2.6%

14 generic:int_overflow 8 2.3%

15 generic:buffer_overflow 8 2.3%

16 specific:check_ret_val 7 2.0%

17 generic:uninit 6 1.7%

18 specific:dma 4 1.1%

19 specific:device 4 1.1%

20 specific:misc 27 7.7%

21 generic:misc 11 3.2%

Challenges
(1) No entry point

(4) Low level code(3) No stable API

(5) Hardware specific

(2) Kernel core model

(6) Concurrency

30

Linux Verification Center

founded in 2005
● OLVER Program
● Linux Standard Base Infrastructure Program
● Linux Driver Verification Program

31

LDV Toolchain

Challenges
(1) No entry point

(4) Low level code
 Pointer Analysis with

Uninterpreted Functions

M. Mandrykin

(3) No stable API

(5) Hardware specific

(2) Kernel core model

(6) Concurrency

Challenges
(1) No entry point

(4) Low level code
 Pointer Analysis with

Uninterpreted Functions

M. Mandrykin

(3) No stable API
 Using Aspect-Oriented

Programming for Preparing C
Programs for Static Verification

E. Novikov

(5) Hardware specific

(2) Kernel core model
Using Aspect-Oriented

Programming for Preparing C
Programs for Static Verification

E. Novikov

(6) Concurrency

Challenges
(1) No entry point
 Environment model

generator

(4) Low level code
 Pointer Analysis with

Uninterpreted Functions

M. Mandrykin

(3) No stable API
 Using Aspect-Oriented

Programming for Preparing C
Programs for Static Verification

E. Novikov

(5) Hardware specific

(2) Kernel core model
Using Aspect-Oriented

Programming for Preparing C
Programs for Static Verification

E. Novikov

(6) Concurrency

35

Pseudo-main generation
int main(int argc,char* argv[])
{
 init_module()
 for(;;) {
 switch(*) {
 case 0: driver_probe(*,*,*);break;
 case 1: driver_open(*,*);break;
 ...
 }
 }
 exit_module();
}

Challenges
(1) No entry point
 Environment model

generator

(4) Low level code
 Pointer Analysis with

Uninterpreted Functions

M. Mandrykin

(3) No stable API
 Using Aspect-Oriented

Programming for Preparing C
Programs for Static Verification

E. Novikov

(5) Hardware specific

(2) Kernel core model
 Using Aspect-Oriented

Programming for Preparing C
Programs for Static Verification

E. Novikov

(6) Concurrency

Future Data Race Detection
Tools
● Runtime analysis

● Kernel Strider (Google Research Award)
● KEDR(ISPRAS) + ThreadSaniziter(Google)

● Race Hound
● HW breakpoints

Beta to be released by the end of 2012

for x86 only
● Static analysis

● Research in progress

Conclusions
(1) No entry point
 Environment model

generator

(4) Low level code
 Pointer Analysis with

Uninterpreted Functions

M. Mandrykin

(3) No stable API
 Using Aspect-Oriented

Programming for Preparing C
Programs for Static Verification

E. Novikov

(5) Hardware specific
No idea

(2) Kernel core model
 Using Aspect-Oriented

Programming for Preparing C
Programs for Static Verification

E. Novikov

(6) Concurrency
To be researched

Still positive

Crete, 2005

A.Khoroshilov

Institute for System Programming of the Russian Academy of Sciences

Thank you!

Alexey Khoroshilov
khoroshilov@linuxtesting.org
http://linuxtesting.org/project/ldv

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	stable_api_nonsense.txt
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

