On our way to apply model-checking to the
kernel
Linux Driver Verification Workshop — ISoLA 2012

Alexandre Lissy

(/ Mandriva

Mandriva, Paris

L@

Conduite (ERL CNRS 6305)

October 15th, 2012

A. Lissy On our way to apply model-checking to the kernel October 15th, 2012 1/40

Outline

o Bibliography results
9 Explo(d|r)ing the kernel

0 Building a graph of the kernel
@ How to build it
@ Graph size

Symbols

@ Density

@ Average Path Length

@ Degrees

HeatMaps

o Conclusion
@ On the kernel graph
@ On model-checking the kernel

A. Lissy On our way to apply model-checking to the kernel October 15th, 2012 2/40

0 Bibliography results

m]

)
On our way to apply model-checking to the kernel

2a0

Applying model-checking to kernel

Not a lot of references can be found in literature

@ SLAM/SDV at Microsoft
@ Coccinelle for Linux

Model-Checking: limited by state explosion = Limiting number
of states

A. Lissy On our way to apply model-checking to the kernel October 15th, 2012 4/40

Model-Checking of dynamic structures

Recent work

Introduction of the Abstract Regular Tree Model Checking
technique [?] and application to linked lists [?]

Prototype GCC plugin, seems very promising

A. Lissy On our way to apply model-checking to the kernel October 15th, 2012 5/40

Q Explo(d|r)ing the kernel

m]

)
On our way to apply model-checking to the kernel

2a0

Clustering the Kernel ?

Finding independent parts inside the kernel

@ First, study kernel topology
@ Tool: graph of symbols dependencies
@ Extract as many informations as possible from this graph

A. Lissy On our way to apply model-checking to the kernel October 15th, 2012 7/40

Definitions

A set of directed edges and vertices
Object file in the kernel build process

Directed edge

Symbol usage between two object files. Direction is used to
known which one is exporting and importing

A. Lissy On our way to apply model-checking to the kernel October 15th, 2012 8/40

Example

Small example
Three source files, three corresponding object files

funcA

Exports, usages
@ filel.cuses funcA (), funcB () and varl
@ file2.cuses funcC ()

A. Lissy On our way to apply model-checking to the kernel October 15th, 2012 9/40

e Building a graph of the kernel
@ How to build it
@ Graph size
@ Symbols
@ Density
@ Average Path Length
@ Degrees
@ HeatMaps

October 15th, 2012 10/
A. Lissy On our way to apply model-checking to the kernel 40

Adding to Extracting
database ELF symbols

Listing ob-
jects files

=

On our way to apply model-checking to the kernel

\5

Generating object files

Using kernel build system

Two build configurations
@ defconfig (2000 nodes, 50000 edges)
@ allyesconfig (10000 nodes, 320000 edges)
@ Limited to current build hardware

@ Allows easy comparison, light versus complete system;
base system versus full system with drivers.

@ Using object files avoid complex, risky C source code
parsing.

i . October 15th, 2012
A. Lissy On our way to apply model-checking to the kernel

12
40

Working with object files

How to discover useful object files ?

Finding

Naive parsing of kernel Makefile’s
@ Find variables assignments which contains .o
@ Extract each object file referenced
@ Check that it exists really on the filesystem

@ If it is the case, then add it to the list of object files to
analyze

Works well, finding object files that have a legitimate existence
in the kernel build system.

October 15th, 2012 13/
A. Lissy On our way to apply model-checking to the kernel 40

Symbols extraction

How do we extract them ? And which one to extract ?

Using ELF extraction tools:

@ First implementation, with readelf

@ Second implementation, through 1ibelf (1ibelfg0)
Extracting which ones ? All of them!

Using a database to store the result.

Storing informations

Three main objects, representing symbols, symbol types, object
files and how they relates.

Slowest part of the process ...

October 15th, 2012 14 |
A. Lissy On our way to apply model-checking to the kernel 40

Database schema

objectfile

symboltype

-id INTEGER [PK]
- filename VARCHAR(255) [N]

- id INTEGER [PK]

- typename VARCHAR(64) [N]
- scope VARCHAR(64) [N]

- ndx INTEGER [N]

A. Lissy

symbol

-id INTEGER [PK]
- name VARCHAR(64) [N]
- idfilename INTEGER [FK,N]
- idtype INTEGER [FK,N]

On our way to apply model-checking to the kernel

October 15th, 2012

15/
40

First level graph

Definition

The first level graph is a naive graph built directly from the
database. It serves as a basis for some analysis and more
important it will be the source for transformations.

Building

How to build it

@ Nodes: using all object files from the database. Label: full
path of the object file

@ Edges: using all symbols from database

October 15th, 2012 16 /
A. Lissy On our way to apply model-checking to the kernel 40

Transformations

Producing new graph, using the “naive” as a source, that allows
and/or ease analysis

@ Merging nodes
@ Merging edges

October 15th, 2012 17 |
A. Lissy On our way to apply model-checking to the kernel 40

Analysis

Studying graph through its properties
The goal is to be able to characterize the graph associated to a
kernel.

@ Size: number of nodes, number of edges
@ Degrees: in and out

@ Symbol occurrences

@ Density

@ Average path length

@ Heatmaps

October 15th, 2012 18/
A. Lissy On our way to apply model-checking to the kernel 40

Transformations performed

Merging edges

@ Relations between two nodes
@ Computing “attraction”™

Anm = Card(Edges(N, M))

Merging nodes

@ Looking at “root” directories: mm/, kernel/, drivers/,
etc.

@ Or deeper: inside drivers/

October 15th, 2012 19/
A. Lissy On our way to apply model-checking to the kernel 40

Graph size: nodes and edges

Nodes Edges
Version | defconfig | allyesconfig | defconfig | allyesconfig
v3.0 1836 9593 51700 321463
v3.1 1842 9764 52390 332865
v3.2 1861 9897 53005 337717
v3.3 1874 10044 53418 344314
v3.4 1871 10172 53646 349271
/'7/<
(a) Nodes (b) Edges

A. Lissy

On our way to apply model-checking to the kernel

October 15th, 2012

20 /
40

Graph size variations: nodes and edges

Nodes Edges
Version | defconfig | allyesconfig | defconfig | allyesconfig
v3.0 - - - -
v3.1 +0.33% +1.78% +1.33% +3.55%
v3.2 +1.03% +1.36% +1.17% +1.46%
v3.3 +0.70% +1.49% +0.78% +1.95%
v34 | —0.16% +1.27% +0.43% +1.44%

A. Lissy

On our way to apply model-checking to the kernel

October 15th, 2012

21
40

Code base size variations

SLOCCount Evolution
Version | defconfig | allyesconfig | defconfig | allyesconfig
v3.0 9614824 9612505 - -
v3.1 9704743 9702470 +0.94% +0.94%
v3.2 9862036 9860466 +1.62% +1.63%
v3.3 9977312 9976172 +1.17% +1.17%
v3.4 | 10120350 10119606 +1.43% +1.44%

A. Lissy

Figure: Code base size evolution

On our way to apply model-checking to the kernel

October 15th, 2012

22
40

Symbol occurrences

defconfig allyesconfig

_raw_spin_lock 782 mutex_lock_nested 4614

_cond_resched 806 mutex_unlock 4898

__kmalloc 846 __kmalloc 5156

current_task 864 __stack_chk_fail 6258

mutex_lock 912 kmem_cache_alloc_trace 6922

mutex_unlock 936 kmalloc_caches 6950
kmem_cache_alloc_trace | 1254 kfree 10152
kmalloc_caches 1270 printk 11336
printk 1658 __gcov_init 19014
kfree 1706 __gcov_merge_add 19014

On our way to apply model-checking to the kernel

" October 15th, 2012

23 /
40

Density
Version | defconfig | allyesconfig
v3.0 0.015346 0.003494
v3.1 0.015449 0.003492
v3.2 0.015313 0.003448
v3.3 0.015219 0.003413
v3.4 0.015333 0.003376

Oty ks

ooz pooas
a0 ar w1 s s

Figure: Density among versions

=] F = = S

Graph density per subdirectories, kernel 3.0

Subdir | defconfig | allyesconfig
arch | 0.039320 0.035418
block | 0.268398 0.281667
crypto | 0.241935 0.073537
drivers | 0.021583 0.002376
fs | 0.063002 0.018673
init | 0.291667 0.291667
ipc | 0.712121 0.719697
kernel | 0.122087 0.126854
lib | 0.019572 0.016000
mm | 0.309949 0.299454
net | 0.060322 0.015070
security | 0.288762 0.103541
sound | 0.173263 0.024607

October 15th, 2012 25 /
A. Lissy On our way to apply model-checking to the kernel 40

Density

T T
Density - defconfig —+—
Density - allyesconfig — -

0.001
arch block

crypto drivers fs init ipc kernel lib

net security sound

= DI

Figure: Density over subdirectories = i | | |i| iili "

On our way to apply model-checking to the kernel

243

2428

2426

2424

2422

2418

Average Path Length defconfig
»
b
8

2416

2414

2412

241

T
Average Path Length - defconfig —+—
Average Path Length - allyesconfig ——<~-

v3.0

v3.1 v3.2 v3.3 V3.

Figure: Average Path Length = =

2.0148

2.0144

2.0142

2.014

2.0138

2.0136

2.0134

2.0132

2013
4

Average Path Length allyesconfig

22)CNE

On our way to apply model-checking to the kernel M

(b) allyesconfig

(a) defconfig

On our way to apply model-checking to the kernel

T e

(c) Kernel v3.0

ey ot

e

On our way to apply model-checking to the kernel

(d) Kernel v3.4

m]

oty

16000 r

12000 -

10000 [~

8000

6000

Degrees difference

4000

2000

2001 1 1

T T T
Degrees difference - in - defconfig —+—
Degrees difference - n - allyesconfig
rence - out - defconfig -~ % --
negreesdmerenoe out - allyesconfig -+

0
arch block crypto drivers fs init ipc kernel lib mm net security sound

Figure: Kernelv3.4vsv3.0° = =

DIE

On our way to apply model-checking to the kernel M

HeatMap — Why ?

Visualisation issues

@ Easy way to see symbol usage
@ Compact, efficient

Proposition

“HeatMap”, showing intensity of dependencies; roughly
equivalent to an adjacency matrix.

@ Axis: subdirectories
@ Values: normalized number of edges

i . October 15th, 2012
A. Lissy On our way to apply model-checking to the kernel

31/
40

HeatMap - Kernel 3.0

(a) defconfig b) allyesconfig

@ Scale for defconfig: 010 0.16
@ Scale for allyesconfig: 010 0.3

October 15th, 2012 32/
A. Lissy 40

HeatMap - drivers

(c) Kernel v3.0 (d) Kernel v3.4

Same scale for both

= October 15th, 2012 33/
A. Lissy 40

e Conclusion
@ On the kernel graph
@ On model-checking the kernel

2 . October 15th, 2012 34 |
A. Lissy On our way to apply model-checking to the kernel 40

@ Caracterizing a kernel via a graph
@ Number of nodes, edges

@ Relations between subcomponents of the kernel
@ Foundation of a process, tools

o =

@ Flat graph

@ Edges qualifications
@ Quite slow process
@ Not enough kernel

On our way to apply model-checking to the kernel

m]

@ Re-use tree informations

@ Using more symbols informations
@ Running over more kernel

@ Running on other code base

On our way to apply model-checking to the kernel

m]

What has been done for Linux ?

.
@ “Porting” SDV work as LDV
e Hard to find up-to-date information about it
e Publications were quite enthusiasts
@ Coccinelle

e First targetting evolutions
e Pattern matching tool

i . October 15th, 2012
A. Lissy On our way to apply model-checking to the kernel

38 /
40

What about ARTMC ?

.
@ Technique for checking complex data structures

@ Running inside GCC
@ Quite new but very promising

Probably the best fit for using on kernel code, could allow to
verify things not being verified right now

October 15th, 2012 39 /
A. Lissy On our way to apply model-checking to the kernel 40

Thanks ! Any question ?

	Bibliography results
	Explo(d|r)ing the kernel
	Building a graph of the kernel
	How to build it
	Graph size
	Symbols
	Density
	Average Path Length
	Degrees
	HeatMaps

	Conclusion
	On the kernel graph
	On model-checking the kernel

