
Institute for System Programming of the Russian Academy of Sciences

Pointer analysis with Pointer analysis with
uninterpreted functionsuninterpreted functions

Mikhail Mandrykin
mandrykin@ispras.ru

The ISoLA 2012 symposium
Heraklion, Crete

15 Oct 2012

Currently a model can be accurate if it doesn't
make heavy use of (or rely on):

 Bitwise operations (e.g. &, |, ^)
 Arithmetic over/underflow error detection
 Non-linear arithmetic
 Multithreading (race conditions detection)
 Recursive data types (e.g. lists)
 Arrays
 Nested structures (and container_of macro)
 Pointer aliasing

Linux Driver Verification

22 / / 1919

Bugfix example
(/drivers/connector/connector.c, commit 663dd6d, Linux 2.6.40 i.e. also 3.0):

 static int cn_call_callback(struct sk_buff *skb)

{

int err = -ENODEV;
...

if (cbq != NULL) {

err = 0;
...

kfree_skb(skb);

}

return err;

}
...

err = cn_call_callback(skb);

if (err < 0)

kfree_skb(skb);

Double freeing
of a socket buffer

(skb)

Linux Driver Verification (2)

33 / / 1919

Typical example of rule with inaccurate model:
 Don't call kfree_skb twice

 Avoid double freeing of skb buffers

 Socket buffers (or skbs) are represented by sk_buff
structures

 Pointers to the structures are frequently located in
arrays, lists, queues and other data structures

 This leads to many false positive (spurious UNSAFE)
verdicts

Linux Driver Verification (3)

44 / / 1919

BLAST with Andersen's alias analysis
 In many cases it's really useful!

 kfree_skb(info->rx_skb);
 info->rx_skb = NULL;

...
dtl1_receive(info);

 dtl1_receive(dtl1_info_t *info)
{

...
if (info->rx_skb)

kfree_skb(info->rx_skb);

The infos here are may-aliased

The call is
unreachable

Pointer analysis

55 / / 1919

But still...
 for (i = 0; i < RIONET_RX_RING_SIZE; i++)

kfree_skb(rnet->rx_skb[i]);

// RIONET_RX_RING_SIZE defaults to 128

 while (db->rx_avail_cnt) {

kfree_skb(db->rx_ready_ptr->rx_skb_ptr);

db->rx_ready_ptr = db->rx_ready_ptr->next_rx_desc;

db->rx_avail_cnt--;

 }

// db->rx_avail_cnt <= RX_DESC_CNT == 32

 nf_conntrack_put_reasm(skb->nfct_reasm);

Linked lists

Field to variable aliasing

Arrays

Pointer analysis (2)

66 / / 1919

But still...
 static void bdx_tx_free_skbs(struct bdx_priv *priv)

{

struct txdb *db = &priv->txdb;

while (db->rptr != db->wptr) {

kfree_skb(db->rptr->addr.skb);

++db->rptr;

}

}

 struct bdx_priv has 26 fields. 11 are other
structures or pointers to structures, some of which
have more than 25 fields, some of which are also
structures... and we are to update every subfield in
each of priv may-aliases when passing the
parameter

Pointer analysis (3)

Pointer arithmetic

77 / / 1919

BLAST's and alternative approaches

Tool/approach Pointers Structures Arrays Recursive data
structures

Pointer
arithmetic

Performance

BLAST with"closure
depth" + ±

(finite depth)
- - - +

Optimized BLAST with
"infinite closure depth" + + - - - +

BLAST with lazy shape
analysis (“BLAST 3.0”) + + - + - ?

Bounded Model Checking + + + ±
(finite depth)

+ -

CPAchecker with predicate
analysis(current implementation) + - - - - +

Our approach
(uninterpreted functions) + + + ±

(finite depth)
+ ?

Pointer analysis (4)

88 / / 1919

What is the initial idea behind the approach?
 Very simple, terribly inefficient but precise memory

model:

rnet->rx_skb[i]->users--; →
M2 = store(M1,

M1[M1[rnet] + offsetof(struct rionet_private, rx_skb) + M1[i]] +

offsetof(struct sk_buff, users),
M1[M1[M1[rnet] + offsetof(struct rionet_private, rx_skb) + M1[i]] +

offsetof(struct sk_buff, users)] - 1)

Suggested approach

99 / / 1919

Even more inefficient...
 Most state-of-the-art SMT-solvers still don't

fully support array interpolation
 So we'll use uninterpreted functions
 No store(∙,∙,∙) operation
 Congruence: a = b → f(a) = f(b)
 m1(a1) = 1, m2(a2) = 2, m2(a1) = ?

 We need to explicitly encode retention of
earlier assigned values

 a2≠a1→m2(a1) = m1(a1) and so on for every ai

Suggested approach (2)

1010 / / 1919

How do we encode memory regions?
 One uninterpreted constant for each region
 Each region has positive address (bi>0)

 Regions don't intersect:
B(bi + k)= i, 0 ≤ k < s,
where s is the size of the region

 bi + k = bj + l → B(bi + k) = B(bj + l) → i = j

 So number of such equalities is linear

Suggested approach (3)

1111 / / 1919

What are suggested optimizations?
• Typing i.e. one array per one simple data type

• Pure variables, i.e. variables that don't
have aliases

• Structure field assignment optimization, i.e.
omitting the antecedents if offsets are known to be
unequal in advance

Suggested approach (4)

e.g. char *,
long int,
struct sk_buff *,
...

e.g. int i; // just a counter
// `&i' occurs nowhere in the code

e.g. updating skb1->next can't

influence any skb2->prev
though they have the same type

1212 / / 1919

Further optimizatinos

• Using constant subexpressions for
initialization

• Amortization of sequential assignments

• Applying preliminary alias analysis (again!)

Suggested approach (5)

e.g. kzalloc(sizeof(*info), GFP_KERNEL)

e.g. for (i = 0; i < MAX_SKB_FRAGS + 1; i++) {
lwords = 7 + (i * 3);
... /* pad it with 1 lword */
txd_sizes[i].qwords = lwords >> 1;
txd_sizes[i].bytes = lwords << 2;

}
// No reading through any pointer during the entire loop
// So let's update the memory just once after the loop!

1313 / / 1919

"C-to-formula converter" prototype
(currently only predicate derivation is implemented)

Evaluation

C to formula converter

Formula to C converterVerdict

Interpolant

Interpolating
SMT solver

Predicates

Counterexample
path

Variable
declarations

Modified

Predicate CPA

Our
statistics CPA

Driver

1414 / / 1919

Evaluation (1)

Driver Total

By type
 By

offset
(max)1 2 3 4 5

bluetooth/bpa10x.ko
(2 skb) 422

unsigned
char

134

signed
char

112

unsigned
long int

44

unsigned
short int

26

signed
long int

18
18

bluetooth/dtl1_cs.ko
(32 skb) 3814

signed char

1609
unsigned
char

639

unsigned
long int

536

unsigned
short int

312

signed
long int

170
137

isdn/hysdn/hysdn.ko
(20 skb) 2120

signed char

960
unsigned
char

340

unsigned
long int

300

unsigned
short int

180

signed
long int

100
80

hid/usbhid/usbkbd.ko
(no rule model applied) 789

unsigned
char

293

signed
char

329

unsigned
long int

39

struct
list_head*

12

unsigned
short
int

12
11

net/usb/cdc-phonet.ko
(no rule model applied) 224

unsigned
long int

38

signed
char

59

signed
char *

16

unsigned
char

16

struct
list_head*

12
17

Pointer target statistics

1515 / / 1919

Evaluation (2)

Driver No
optimizations

Target
filtering

 Pure
variables

Both

bluetooth/bpa10x.ko
(2 skb) 448 369 311 220

bluetooth/dtl1_cs.ko
(32 skb) 3700 2400 623 456

isdn/hysdn/hysdn.ko
(20 skb) 726 474 101 95

hid/usbhid/usbkbd.ko
(no rule model applied) 352 279 119 88

net/usb/cdc-phonet.ko
(no rule model applied) 255 166 15 15

Formula sizes in KB

1616 / / 1919

Sample interpolant and predicates
true

(and
 (= usbpn_open!!i~1 0.0)

 (= usbpn_open!!dev~1 usbpn_open!!pnd~1))
(and
 (= usbpn_open!!i~1 0.0)

 (= usbpn_open!!dev~1 usbpn_open!!pnd~1))
(= (struct-urb-*~2 (+ (+ usbpn_close!!pnd~1 usbpn_close!!i~1) 66.0)) 0.0)
false

0 == 0
usbpn_open::i == 0 && usbpn_open::dev == usbpn_open::pnd
usbpn_open::i == 0 && usbpn_open::dev == usbpn_open::pnd
usbpn_close::pnd->urbs[usbpn_close::i] == 0
0 < 0

~70 locations
~60 operators in path
MathSAT interpolation time: 0.039s

Evaluation (3)

1717 / / 1919

 Approach isn't carefully evaluated yet
 Current results are not disappointing
 Not all optimizations are implemented →

better performance expected
 Many low-level C language features are

supported (such as pointer arithmetics,
container_of macro etc.)

 We are planning further investigation of
the approach and its implementation as a
CPA in the CPAchecker() tool

Conclusions

1818 / / 1919

Institute for System Programming of the Russian Academy of Sciences

Mikhail Mandrykin
mandrykin@ispras.ru

Thank you!Thank you!

	Slide 1
	Linux Driver Verification
	Linux Driver Verification
	Linux Driver Verification
	Pointer analysis
	Pointer analysis
	Slide 7
	Pointer analysis
	Suggested approach
	Suggested approach
	Slide 11
	Suggested approach
	Suggested approach
	Evaluation
	Slide 15
	Slide 16
	Evaluation
	Conclusions
	Slide 19

