
Institute for System Programming of the Russian Academy of Sciences

The Experience of
Heavy Weight Static Analysis
of Linux Device Drivers

 Alexey Khoroshilov
khoroshilov@linuxtesting.org

Outline

● Heavy Weight Static Analysis
● Linux Driver Verification
● Lessons Learnt

Static Analysis

Key characteristics
• Scope of analysis (kind of bugs)
• False positives (false bugs reported)
• False negatives (real bugs missed)
• Resources required for analysis

Static Analysis:
Trade-Off Triangle

False positives

False negativesTime of analysis

Static Analysis:
Trade-Off Triangle

False positives

False negativeTime of analysis

light-weight heavy-weight

Heavy-Weight Analysis

Based on a picture from http://engineer.org.in

error
trace

Static Analysis vs Model Checking

Static Analysis Model Checking

potential bugs found
 SAFE UNSAFE UNKNOWN

Model Checking: Originally

program
in C

VERDICT:
 SAFE
 UNSAFE
 UNKNOWN

ERROR TRACE:
init();
 X = 0;
open();
write();
 do_write();
 if (X == 0)
 assert()

model of the
program

Model
Checker

expert

property to
 be checked

b1
a2 a2

b2 b2 b2 b2

b1
a2 a2

b2 b2 b2 b2

r

Model Checking: Inside

● Reachability problem

error location

entry point

Model Checking: Now

● BMC – Bounded Model Checking
● CEGAR – Counter-Example Guided

Abstraction Refinement

Bounded Model Checking

● finite unfolding of transition relation

b1
a2 a2

b2 b2 b2 b2

b1
a2 a2

b2 b2 b2 b2

r

Counter-Example Guided
Abstraction Refinement

4. Model
refinement

1. Abstraction

3. Error trace
analysis

2. Model
checking

 SAFE

 UNSAFE

program
 in C

There is a path
to error state

 trace

The path
is unfeasible

The path
is feasible

model of
the program

new
precision

http://sv-comp.sosy-lab.org

SVCOMP'12 Results
CEGAR

CEGAR

CEGAR

CEGAR

CEGAR

CEGAR

BM
C

BM
C

BM
C

Outline

● Heavy Weight Static Analysis
● Linux Driver Verification
● Lessons Learnt

b1
a2 a2

b2 b2 b2 b2

b1
a2 a2

b2 b2 b2 b2

r

Model Checking and Linux Kernel

● Reachability problem

error location

entry point

Verification Tools World

int main(int argc,char* argv[])

{

 ...

 other_func(var);

 ...

}

void other_func(int v)
{
 ...
 assert(x != NULL);
}

Device Driver World

No explicit calls to
linking-level init procedures

Callback interface
procedures registration

module_init(DAC960_init_module);
module_exit(DAC960_cleanup_module);

ret = pci_register_driver(&DAC960_pci_driver)

19

Pseudo-main generation
int main(int argc,char* argv[])
{
 init_module()
 for(;;) {
 switch(*) {
 case 0: driver_probe(*,*,*);break;
 case 1: driver_open(*,*);break;
 ...
 }
 }
 exit_module();
}

20

Pseudo-main generation (2)

● Order limitation
● open() after probe(), but before remove()

● Implicit limitations
● read() only if open() succeed

● and it is specific for each class of drivers

b1
a2 a2

b2 b2 b2 b2

b1
a2 a2

b2 b2 b2 b2

r

Model Checking and Linux Kernel

● Reachability problem

error location

entry point

Rule Instrumentor
mutex x;
int f(int y)
{
 lock(x);
 ...
 unlock(x);
 return y;
}

int x_locked = 0;
int f(int y)
{
 assert(x_locked == 0);
 x_locked = 1;
 ...
 assert(x_locked == 1);
 x_locked = 0;
 return y;
}

Aspect-Oriented Approach
mutex x;
int f(int y)
{
 lock(x);
 ...
 unlock(x);
 return y;
}

Aspect:
around:

call(int lock(mutex x)

{

 assert(x_locked == 0);

 x_locked = 1;

}

Rule Instrumentor
mutex x;
int f(int y)
{
 lock(x);
 ...
 unlock(x);
 return y;
}

int x_locked = 0;
int f(int y)
{
 assert(x_locked == 0);
 x_locked = 1;
 ...
 assert(x_locked == 1);
 x_locked = 0;
 return y;
}

Rule Instrumentor:
Implementation
● CIF – C Instrumentation Framework

● gcc-based aspect-oriented programming tool
for C language

● available at forge.ispras.ru under GPLv3

Where we are

● Static analysis infrastructure
● Front-ends

● ldv-manager
● ldv-git
● ldv-online

ldv-online

ldv-online (2)

Where we are

● Static analysis infrastructure
● Cluster framework
● Front-ends

● ldv-manager
● ldv-git
● ldv-online

● Results database
● Error trace visualizer
● Knowledge base
● Comparison framework

Error Trace Visualizer

Knowledge Base

Bugs Found http://linuxtesting.org/results/ldv
● 50 patches already applied

http://linuxtesting.org/results/ldv

Outline

● Heavy Weight Static Analysis
● Linux Driver Verification
● Lessons Learnt

Lessons Learnt

● Language features support

 No matters which advanced techniques
implemented by a tool if it does not work on
your code

Lessons Learnt

● Language features support
● Efficiently ignore irrelevant details

 Ten of thousands irrelevant transitions vs.
dozens of relevant ones

Lessons Learnt

● Language features support
● Efficiently ignore irrelevant details
● No premature UNKNOWN

Error: Unsupported C feature (recursion) in line 60858:
tmp = gma_power_begin(tmp24, tmp25);
(CallstackTransferRelation.getAbstractSuccessors)

Bug Finder vs. Safe Prover

Lessons Learnt

● Language features support
● Efficiently ignore irrelevant details
● No premature UNKNOWN
● Pointer analysis is a weak point

 complex data structures

 containerof

 even arrays

 many false positives for complex rules

Lessons Learnt

● Language features support
● Efficiently ignore irrelevant details
● No premature UNKNOWN
● Pointer analysis is a weak point
● Engineering Matters

BLAST
Berkeley

Lazy

Abstraction

Software
Verification

Tool

BLAST is a software model checker for C programs.

It uses counterexample-driven automatic abstraction
refinement to construct an abstract model which is
model checked for safety properties.

ISPRAS BLAST 2.6 Release Notes
Speedup ranges from 8 times on small-sized programs to 30 times on

medium-sized programs
● Logarithmic algorithm for useful-blocks (significantly speedup of trace

analysis)
● Improved integration with SMT solvers

● efficient string concatenation
● caching of converted formulae
● optimization of CVC3 options for BLAST use cases

● Formulae normalization moved to solvers since solvers do it faster
● Alias analysis speedup

● must-aliases are handled separately and faster than may-aliases
● removed unnecessary debug prints from alias iteration (even a check for

debug flag impacts performance significantly in hot places)

● BLAST-specific tuning of OCaml virtual machine options

SVCOMP'12 Results
CEGAR

CEGAR

CEGAR

CEGAR

CEGAR

CEGAR

BM
C

BM
C

BM
C

Conclusions

● Language features support
● Efficiently ignore irrelevant details
● No premature UNKNOWN
● Pointer analysis is a weak point
● Engineering Matters

Institute for System Programming of the Russian Academy of Sciences

Thank you!

Alexey Khoroshilov
khoroshilov@linuxtesting.org
http://linuxtesting.org/project/ldv

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Real World Example
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

