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Static Analysis

Key characteristics
• Scope of analysis (kind of bugs)
• False positives (false bugs reported)
• False negatives (real bugs missed)
• Resources required for analysis



Static Analysis:
Trade-Off Triangle

False positives

False negativesTime of analysis
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Heavy-Weight Analysis

Based on a picture from http://engineer.org.in
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Static Analysis vs Model Checking

Static Analysis Model Checking

potential bugs found
 SAFE   UNSAFE UNKNOWN



Model Checking: Originally

program 
in C

VERDICT:
    SAFE
    UNSAFE
    UNKNOWN

ERROR TRACE:
init();
  X = 0;
open();
write();
  do_write();
    if (X == 0)
      assert()

model of the
program

Model 
Checker

expert

property to
 be checked
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Model Checking: Inside

● Reachability problem

error location

entry point



Model Checking: Now

● BMC – Bounded Model Checking
● CEGAR – Counter-Example Guided 

Abstraction Refinement



Bounded Model Checking

● finite unfolding of transition relation
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Counter-Example Guided 
Abstraction Refinement

4. Model
refinement

1. Abstraction

3. Error trace 
analysis

2. Model 
checking

 SAFE

  UNSAFE

program
 in C

There is a path
to error state

 trace

The path 
is unfeasible

The path 
is feasible

model of
the program

new
precision



http://sv-comp.sosy-lab.org



SVCOMP'12 Results
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Model Checking and Linux Kernel

● Reachability problem

error location

entry point



Verification Tools World

int main(int argc,char* argv[])

{

 ...

 other_func(var);

 ...

}

void other_func(int v)
{
  ...
  assert( x != NULL);
}



Device Driver World

No explicit calls to 
linking-level init procedures

Callback interface 
procedures registration

module_init(DAC960_init_module);
module_exit(DAC960_cleanup_module);

ret = pci_register_driver(&DAC960_pci_driver)
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Pseudo-main generation
int main(int argc,char* argv[])
{
  init_module()
  for(;;) {
    switch(*) {
     case 0: driver_probe(*,*,*);break;
     case 1: driver_open(*,*);break;
     ...
    }
  } 
  exit_module();
} 
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Pseudo-main generation (2)

● Order limitation
● open() after probe(), but before remove()

● Implicit limitations
● read() only if open() succeed

● and it is specific for each class of drivers
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Model Checking and Linux Kernel

● Reachability problem

error location

entry point



Rule Instrumentor
mutex x;
int f(int y)
{
  lock(x);
  ...
  unlock(x);
  return y;
}

int x_locked = 0;
int f(int y)
{
  assert(x_locked == 0);
  x_locked = 1;
  ...
  assert(x_locked == 1);
  x_locked = 0;
  return y;
}



Aspect-Oriented Approach
mutex x;
int f(int y)
{
  lock(x);
  ...
  unlock(x);
  return y;
}

Aspect:
around:

call(int lock(mutex x)

{

 assert(x_locked == 0);

 x_locked = 1;

}



Rule Instrumentor
mutex x;
int f(int y)
{
  lock(x);
  ...
  unlock(x);
  return y;
}

int x_locked = 0;
int f(int y)
{
  assert(x_locked == 0);
  x_locked = 1;
  ...
  assert(x_locked == 1);
  x_locked = 0;
  return y;
}



Rule Instrumentor: 
Implementation
● CIF – C Instrumentation Framework

● gcc-based aspect-oriented programming tool 
for C language

● available at forge.ispras.ru under GPLv3





Where we are

● Static analysis infrastructure
● Front-ends

● ldv-manager
● ldv-git
● ldv-online



ldv-online



ldv-online (2)



Where we are

● Static analysis infrastructure
● Cluster framework
● Front-ends

● ldv-manager
● ldv-git
● ldv-online

● Results database
● Error trace visualizer
● Knowledge base
● Comparison framework



Error Trace Visualizer



Knowledge Base



Bugs Found http://linuxtesting.org/results/ldv
● 50 patches already applied 

http://linuxtesting.org/results/ldv
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Lessons Learnt

● Language features support

   No matters which advanced techniques 
implemented by a tool if it does not work on 
your code



Lessons Learnt

● Language features support
● Efficiently ignore irrelevant details

   Ten of thousands irrelevant transitions vs. 
dozens of relevant ones



Lessons Learnt

● Language features support
● Efficiently ignore irrelevant details
● No premature UNKNOWN

Error: Unsupported C feature (recursion) in line 60858:
tmp = gma_power_begin( tmp24, tmp25); 
(CallstackTransferRelation.getAbstractSuccessors) 

Bug Finder vs. Safe Prover



Lessons Learnt

● Language features support
● Efficiently ignore irrelevant details
● No premature UNKNOWN
● Pointer analysis is a weak point

   complex data structures

   containerof

   even arrays

   many false positives for complex rules



Lessons Learnt

● Language features support
● Efficiently ignore irrelevant details
● No premature UNKNOWN
● Pointer analysis is a weak point
● Engineering Matters



BLAST
Berkeley

Lazy

Abstraction

Software 
Verification

Tool

BLAST is a software model checker for C programs. 

It uses counterexample-driven automatic abstraction 
refinement to construct an abstract model  which is 
model checked for safety properties. 



ISPRAS BLAST 2.6 Release Notes
Speedup ranges from 8 times on small-sized programs to 30 times on 

medium-sized programs
● Logarithmic algorithm for useful-blocks (significantly speedup of trace 

analysis)
● Improved integration with SMT solvers

● efficient string concatenation
● caching of converted formulae
● optimization of CVC3 options for BLAST use cases

● Formulae normalization moved to solvers since solvers do it faster
● Alias analysis speedup

● must-aliases are handled separately and faster than may-aliases 
● removed unnecessary debug prints from alias iteration (even a check for 

debug flag impacts performance significantly in hot places)

● BLAST-specific tuning of OCaml virtual machine options
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Conclusions

● Language features support
● Efficiently ignore irrelevant details
● No premature UNKNOWN
● Pointer analysis is a weak point
● Engineering Matters



Institute for System Programming of the Russian Academy of Sciences

Thank you!

Alexey Khoroshilov
khoroshilov@linuxtesting.org
http://linuxtesting.org/project/ldv
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