
Using Refinement in Formal Development of OS

Security Policy Modeli

Ilya Shchepetkov

Ivannikov Institute for System Programming of the Russian Academy of Sciences

shchepetkov@ispras.ru

We present the work in progress on formal development of an operating system security

policy model. The security policy model in question is an original model of access control

and information flows in Linux (the MROSL DP-model), which describes means to enforce

the separation of information based on confidentiality and integrity requirements. We are

using Rodin and Event-B for the MROSL DP-model formalization and verification and so far

we were able to reveal and fix a number of inaccuracies in the model description.

We have already talked about the MROSL DP-model formalization at the Rodin

Workshop 4 years ago. Back then the Event-B specification of the MROSL DP-model was

monolithic in a sense that it consisted of only one context and one machine. Although the

specification was not very large (approximately 1,700 lines), it was quite complex due to the

large number of state variables and dependencies between them, so approximately 30% of

generated proof obligations were not discharged automatically and required up to a month

for their interactive proving. In order to deal with that complexity we were encouraged to try

the refinement technique.

In response to this a new hierarchical version of the MROSL DP-model was written.

The content was broken down into levels that represent different security mechanisms

supported by the MROSL DP-model: the base level describes role-based access control

(RBAC), the second level — mandatory integrity control (MIC), the third — multilevel security

(MLS), and so on. Using the hierarchical MROSL DP-model we were able to decompose our

initial monolithic Event-B specification into 4 machines using the refinement technique. As a

consequence, the structure of the specification became clearer and the number of

automatically discharged proof obligations increased.

Since then the hierarchical MROSL DP-model has been evolved and expanded even

further: now it consists of more than 500 pages of text with extensive use of math. The size

of the specification has grown from 1,700 lines to over 5,000 lines and continues to grow.

Despite the size and complexity, it is still manageable due to the usage of refinement. We

would like to summarise and present our experience, discuss some approaches that we are

using, and outline our plans for the future.

i This work is supported by RFBR grant 18-01-00378.
It was presented on Event-B Day 2018 in Tokyo on November 10, 2018.

Using Refinement in
Formal Development of OS

Security Policy Model
Ilya Shchepetkov

Ivannikov Institute for System Programming of the Russian Academy of Sciences
shchepetkov@ispras.ru

Tokyo, November 10, 2018

Security Policy Models
A security policy model is a high-level specification of security properties that a
given system should possess, and of security mechanisms that enforce those
properties

Examples of such properties:

● Users without a clearance must not get access to secret documents
● System files and processes must be protected from modification by regular

users

2

Security Mechanisms
For strict guarantees of information isolation and simplification of administration
tasks people usually use the following security mechanisms:

● Role-Based Access Control (RBAC)
○ NIST RBAC Model, 2004

● Mandatory Integrity Control (MIC)
○ The Biba Integrity Model, 1975

● Multi-level Security (MLS)
○ The Bell-LaPadula Policy Model, 1973

All of them have formal models establishing their strict semantics and security
properties

3

Motivation

Most publicly available security models are outdated and not fully compatible with
modern operating systems, and are not verified using formal methods. The task of
combining them together is complex and prone to errors that can lead to
vulnerabilities

4

MROSL DP-model
To overcome these issues a new security policy model called the MROSL
DP-model has been developed. It is made specifically for Linux based operating
systems and integrates several security mechanisms preserving their key security
properties:

● RBAC with administrative and negative roles
● MIC with lattice of integrity levels
● MLS with information flows analysis

Our goal was to develop and verify a formal specification of the MROSL DP-model

5

Role-Based Access Control
In RBAC, permissions are grouped into roles and are assigned to a user by an
administrator or obtained though special administrative roles

6

Edit system
files

Read student
files

Edit only its
own files

Admin

Teacher

Student

Users Roles Permissions

Mandatory Integrity Control
In MIC, an integrity level is assigned to all users, processes and files that
represents their level of trustworthiness

There are rules that restrict accesses based on these levels. For example,
processes must not modify files or processes with higher integrity level (more
trusted) even when executed by the root user or a user with root privileges

7

where Low < High

Process
(Low)

File
(High)

Write X

Multi-level Security
MLS was designed to deal with classified documents in military computer systems.
MLS controls access according to the user’s clearance and the file’s classification

These classifications are divided into security levels. For example, the common
government classifications are:

● unclassified
● confidential
● secret
● top-secret

8

Multi-level Security
Example: processes can read data from the file only if their clearance is more or
equal to the classification level of the file

9

Process
(secret)

File
(unclassified or secret)

Read ✔

Processes must not write data to the file if their clearance is less than the
classification level of the file

Process
(secret)

File
(unclassified)

Write X

Why Event-B?
The MROSL DP-model uses set theory and predicate logic to define the state and
the properties that the state must satisfy. It also contains several atomic state
transition rules with pre- and post- conditions

This structure perfectly fits to Event-B. Besides, it is modern and well supported,
and allows to perform manual proofs to assist automatic provers

10

State of the Specification
● Sets:

○ user accounts
○ entities (files, directories)
○ subjects (processes)
○ roles: administrative, ordinary, negative

● Functions:
○ integrity and security levels
○ current accesses and access rights (or permissions): to entities and roles
○ hierarchies of roles, entities and subjects
○ additional relations between elements of the model
○ various flags

11

Invariants of the Specification
● Type of variables

○ SubjectAccesses ∈ Subjects → (Entities ↔ Accesses)

● Security invariants: just like the ones described on previous slides
○ ∀s, e · s ∈ Subjects ∧ e ↦ WriteA ∈ SubjectAccesses(s) ⇒ EntityInt(e) ⊆ SubjectInt(s)

● Consistency
○ No cycles in the filesystem (it should be a modelled as a tree)
○ Every entity has no more than one owner

12

Events of the Specification
● Create or delete entities, user accounts, subjects, roles

○ create or delete hard links for entities and roles
○ rename entities or roles

● Get or delete accesses, access rights to roles, entities
● Change security, integrity labels, various flags
● Additional events for analysis of information flows

○ if an entity x have write access to a subject y, which have write access to a subject z, then
there can be an information flow from x to z

Some state transition rules were splitted into several events to simplify proving

13

Event-B Specification of the MROSL DP-model
First version of the specification (2014):

● monolithic, only one context and one machine;
● hard to maintain, extend and prove;
● 1700 lines of Event-B code based on 200 pages of text of the MROSL

DP-model

14

Event-B Specification of the MROSL DP-model

15

Now:

● hierarchical, 4 main levels;
● still hard to prove, but far easier to understand and extend;
● about 5000 lines of Event-B code based on 300 pages of text of the

hierarchical MROSL DP-model

Refinement Hierarchy

16

RBAC with
administrative and negative

roles

MIC with
lattice of integrity levels

MLS

Analysis of information
flows

Some Statistics and Results
4 main levels:

● 65 variables
● 260 invariants
● 80 events
● ~ 3200 proof obligations

○ 75% are discharged automatically or semi-automatically (no more than a couple simplifying
manual actions)

○ 25% require up to a month of interactive proving

The specification is complete and fully proved, and a number of issues in the
MROSL DP-model are successfully found and fixed

17

Astra Linux
The MROSL DP-model is implemented in the certified Linux distribution called
Astra Linux Special Edition as a Linux Security Module by RusBITech company

18

Linux kernel

System call interface

Linux Security Module

read from file,
create process, ...

is permitted?

Encountered Issues with Event-B and Rodin
● Manual proofs often contain repeated steps that is not possible to automate;
● We have several big predicates that are duplicated in the guards of different

events. It would be great to define them only once, like macro functions in C;
● The hierarchical MROSL DP-model uses multiple inheritance. Sometimes it

even redefines things that are defined on the previous levels. Heavy
workarounds are required to support both these features using refinement.

19

Links
● First level of the Event-B specification of the MROSL DP-model (with

role-based access control):
� https://github.com/17451k/base-model

● Our websites:
� http://linuxtesting.org/
� http://www.ispras.ru/en/

● (in russian): Book about formal development and verification of OS security
policy models, 2018:
� http://www.ispras.ru/publications/2018/security_policy_modeling_and_verification/

20

