Bug

[В начало]

Ошибка # 153

Показать/спрятать трассу ошибок
Error trace
Function bodies
Blocks
  • Others...
    Function bodies without model function calls
    Initialization function calls
    Initialization function bodies
    Entry point
    Entry point body
    Function calls
    Skipped function calls
    Formal parameter names
    Declarations
    Assumes
    Assume conditions
    Returns
    Return values
    DEG initialization
    DEG function calls
    Model function calls
    Model function bodies
    Model asserts
    Model state changes
    Model function function calls
    Model function function bodies
    Model returns
    Model others
    Identation
    Line numbers
    Expand signs
-__CPAchecker_initialize()
{
20 typedef unsigned char __u8;
23 typedef unsigned short __u16;
25 typedef int __s32;
26 typedef unsigned int __u32;
29 typedef long long __s64;
30 typedef unsigned long long __u64;
15 typedef signed char s8;
16 typedef unsigned char u8;
19 typedef unsigned short u16;
21 typedef int s32;
22 typedef unsigned int u32;
24 typedef long long s64;
25 typedef unsigned long long u64;
14 typedef long __kernel_long_t;
15 typedef unsigned long __kernel_ulong_t;
27 typedef int __kernel_pid_t;
48 typedef unsigned int __kernel_uid32_t;
49 typedef unsigned int __kernel_gid32_t;
71 typedef __kernel_ulong_t __kernel_size_t;
72 typedef __kernel_long_t __kernel_ssize_t;
87 typedef long long __kernel_loff_t;
88 typedef __kernel_long_t __kernel_time_t;
89 typedef __kernel_long_t __kernel_clock_t;
90 typedef int __kernel_timer_t;
91 typedef int __kernel_clockid_t;
34 typedef __u32 __le32;
12 typedef __u32 __kernel_dev_t;
15 typedef __kernel_dev_t dev_t;
18 typedef unsigned short umode_t;
21 typedef __kernel_pid_t pid_t;
26 typedef __kernel_clockid_t clockid_t;
29 typedef _Bool bool;
31 typedef __kernel_uid32_t uid_t;
32 typedef __kernel_gid32_t gid_t;
45 typedef __kernel_loff_t loff_t;
54 typedef __kernel_size_t size_t;
59 typedef __kernel_ssize_t ssize_t;
69 typedef __kernel_time_t time_t;
102 typedef __s32 int32_t;
108 typedef __u32 uint32_t;
133 typedef unsigned long sector_t;
134 typedef unsigned long blkcnt_t;
152 typedef u64 dma_addr_t;
157 typedef unsigned int gfp_t;
158 typedef unsigned int fmode_t;
161 typedef u64 phys_addr_t;
166 typedef phys_addr_t resource_size_t;
176 struct __anonstruct_atomic_t_6 { int counter; } ;
176 typedef struct __anonstruct_atomic_t_6 atomic_t;
181 struct __anonstruct_atomic64_t_7 { long counter; } ;
181 typedef struct __anonstruct_atomic64_t_7 atomic64_t;
182 struct list_head { struct list_head *next; struct list_head *prev; } ;
187 struct hlist_node ;
187 struct hlist_head { struct hlist_node *first; } ;
191 struct hlist_node { struct hlist_node *next; struct hlist_node **pprev; } ;
202 struct callback_head { struct callback_head *next; void (*func)(struct callback_head *); } ;
39 struct page ;
64 struct module ;
13 typedef unsigned long pteval_t;
14 typedef unsigned long pmdval_t;
16 typedef unsigned long pgdval_t;
17 typedef unsigned long pgprotval_t;
19 struct __anonstruct_pte_t_9 { pteval_t pte; } ;
19 typedef struct __anonstruct_pte_t_9 pte_t;
21 struct pgprot { pgprotval_t pgprot; } ;
256 typedef struct pgprot pgprot_t;
258 struct __anonstruct_pgd_t_10 { pgdval_t pgd; } ;
258 typedef struct __anonstruct_pgd_t_10 pgd_t;
297 struct __anonstruct_pmd_t_12 { pmdval_t pmd; } ;
297 typedef struct __anonstruct_pmd_t_12 pmd_t;
423 typedef struct page *pgtable_t;
434 struct file ;
447 struct seq_file ;
216 struct kernel_symbol { unsigned long value; const char *name; } ;
71 struct pci_dev ;
259 struct __anonstruct____missing_field_name_14 { unsigned int a; unsigned int b; } ;
259 struct __anonstruct____missing_field_name_15 { u16 limit0; u16 base0; unsigned char base1; unsigned char type; unsigned char s; unsigned char dpl; unsigned char p; unsigned char limit; unsigned char avl; unsigned char l; unsigned char d; unsigned char g; unsigned char base2; } ;
259 union __anonunion____missing_field_name_13 { struct __anonstruct____missing_field_name_14 __annonCompField4; struct __anonstruct____missing_field_name_15 __annonCompField5; } ;
259 struct desc_struct { union __anonunion____missing_field_name_13 __annonCompField6; } ;
98 struct thread_struct ;
100 struct mm_struct ;
101 struct task_struct ;
102 struct cpumask ;
20 struct qspinlock { atomic_t val; } ;
33 typedef struct qspinlock arch_spinlock_t;
34 struct qrwlock { atomic_t cnts; arch_spinlock_t wait_lock; } ;
14 typedef struct qrwlock arch_rwlock_t;
125 typedef void (*ctor_fn_t)();
58 struct device ;
467 struct file_operations ;
479 struct completion ;
480 struct pt_regs ;
710 struct bug_entry { int bug_addr_disp; int file_disp; unsigned short line; unsigned short flags; } ;
341 struct cpumask { unsigned long bits[128U]; } ;
15 typedef struct cpumask cpumask_t;
654 typedef struct cpumask *cpumask_var_t;
190 struct static_key ;
288 struct pt_regs { unsigned long r15; unsigned long r14; unsigned long r13; unsigned long r12; unsigned long bp; unsigned long bx; unsigned long r11; unsigned long r10; unsigned long r9; unsigned long r8; unsigned long ax; unsigned long cx; unsigned long dx; unsigned long si; unsigned long di; unsigned long orig_ax; unsigned long ip; unsigned long cs; unsigned long flags; unsigned long sp; unsigned long ss; } ;
247 struct math_emu_info { long ___orig_eip; struct pt_regs *regs; } ;
26 union __anonunion___u_47 { int __val; char __c[1U]; } ;
38 union __anonunion___u_49 { int __val; char __c[1U]; } ;
23 typedef atomic64_t atomic_long_t;
81 struct static_key { atomic_t enabled; } ;
22 struct tracepoint_func { void *func; void *data; int prio; } ;
28 struct tracepoint { const char *name; struct static_key key; void (*regfunc)(); void (*unregfunc)(); struct tracepoint_func *funcs; } ;
254 struct fregs_state { u32 cwd; u32 swd; u32 twd; u32 fip; u32 fcs; u32 foo; u32 fos; u32 st_space[20U]; u32 status; } ;
26 struct __anonstruct____missing_field_name_64 { u64 rip; u64 rdp; } ;
26 struct __anonstruct____missing_field_name_65 { u32 fip; u32 fcs; u32 foo; u32 fos; } ;
26 union __anonunion____missing_field_name_63 { struct __anonstruct____missing_field_name_64 __annonCompField22; struct __anonstruct____missing_field_name_65 __annonCompField23; } ;
26 union __anonunion____missing_field_name_66 { u32 padding1[12U]; u32 sw_reserved[12U]; } ;
26 struct fxregs_state { u16 cwd; u16 swd; u16 twd; u16 fop; union __anonunion____missing_field_name_63 __annonCompField24; u32 mxcsr; u32 mxcsr_mask; u32 st_space[32U]; u32 xmm_space[64U]; u32 padding[12U]; union __anonunion____missing_field_name_66 __annonCompField25; } ;
66 struct swregs_state { u32 cwd; u32 swd; u32 twd; u32 fip; u32 fcs; u32 foo; u32 fos; u32 st_space[20U]; u8 ftop; u8 changed; u8 lookahead; u8 no_update; u8 rm; u8 alimit; struct math_emu_info *info; u32 entry_eip; } ;
227 struct xstate_header { u64 xfeatures; u64 xcomp_bv; u64 reserved[6U]; } ;
233 struct xregs_state { struct fxregs_state i387; struct xstate_header header; u8 extended_state_area[0U]; } ;
254 union fpregs_state { struct fregs_state fsave; struct fxregs_state fxsave; struct swregs_state soft; struct xregs_state xsave; u8 __padding[4096U]; } ;
271 struct fpu { unsigned int last_cpu; unsigned char fpstate_active; unsigned char fpregs_active; unsigned char counter; union fpregs_state state; } ;
169 struct seq_operations ;
372 struct perf_event ;
377 struct __anonstruct_mm_segment_t_78 { unsigned long seg; } ;
377 typedef struct __anonstruct_mm_segment_t_78 mm_segment_t;
378 struct thread_struct { struct desc_struct tls_array[3U]; unsigned long sp0; unsigned long sp; unsigned short es; unsigned short ds; unsigned short fsindex; unsigned short gsindex; unsigned long fsbase; unsigned long gsbase; struct perf_event *ptrace_bps[4U]; unsigned long debugreg6; unsigned long ptrace_dr7; unsigned long cr2; unsigned long trap_nr; unsigned long error_code; unsigned long *io_bitmap_ptr; unsigned long iopl; unsigned int io_bitmap_max; mm_segment_t addr_limit; unsigned char sig_on_uaccess_err; unsigned char uaccess_err; struct fpu fpu; } ;
38 typedef int Set;
35 struct resource { resource_size_t start; resource_size_t end; const char *name; unsigned long flags; unsigned long desc; struct resource *parent; struct resource *sibling; struct resource *child; } ;
27 union __anonunion___u_80 { struct list_head *__val; char __c[1U]; } ;
189 union __anonunion___u_84 { struct list_head *__val; char __c[1U]; } ;
703 struct lockdep_map ;
55 struct stack_trace { unsigned int nr_entries; unsigned int max_entries; unsigned long *entries; int skip; } ;
28 struct lockdep_subclass_key { char __one_byte; } ;
53 struct lock_class_key { struct lockdep_subclass_key subkeys[8U]; } ;
59 struct lock_class { struct hlist_node hash_entry; struct list_head lock_entry; struct lockdep_subclass_key *key; unsigned int subclass; unsigned int dep_gen_id; unsigned long usage_mask; struct stack_trace usage_traces[13U]; struct list_head locks_after; struct list_head locks_before; unsigned int version; unsigned long ops; const char *name; int name_version; unsigned long contention_point[4U]; unsigned long contending_point[4U]; } ;
144 struct lockdep_map { struct lock_class_key *key; struct lock_class *class_cache[2U]; const char *name; int cpu; unsigned long ip; } ;
207 struct held_lock { u64 prev_chain_key; unsigned long acquire_ip; struct lockdep_map *instance; struct lockdep_map *nest_lock; u64 waittime_stamp; u64 holdtime_stamp; unsigned short class_idx; unsigned char irq_context; unsigned char trylock; unsigned char read; unsigned char check; unsigned char hardirqs_off; unsigned short references; unsigned int pin_count; } ;
572 struct raw_spinlock { arch_spinlock_t raw_lock; unsigned int magic; unsigned int owner_cpu; void *owner; struct lockdep_map dep_map; } ;
32 typedef struct raw_spinlock raw_spinlock_t;
33 struct __anonstruct____missing_field_name_96 { u8 __padding[24U]; struct lockdep_map dep_map; } ;
33 union __anonunion____missing_field_name_95 { struct raw_spinlock rlock; struct __anonstruct____missing_field_name_96 __annonCompField28; } ;
33 struct spinlock { union __anonunion____missing_field_name_95 __annonCompField29; } ;
76 typedef struct spinlock spinlock_t;
23 struct __anonstruct_rwlock_t_97 { arch_rwlock_t raw_lock; unsigned int magic; unsigned int owner_cpu; void *owner; struct lockdep_map dep_map; } ;
23 typedef struct __anonstruct_rwlock_t_97 rwlock_t;
13 struct optimistic_spin_queue { atomic_t tail; } ;
39 struct mutex { atomic_t count; spinlock_t wait_lock; struct list_head wait_list; struct task_struct *owner; void *magic; struct lockdep_map dep_map; } ;
67 struct mutex_waiter { struct list_head list; struct task_struct *task; void *magic; } ;
177 struct timespec ;
178 struct compat_timespec ;
179 struct __anonstruct_futex_99 { u32 *uaddr; u32 val; u32 flags; u32 bitset; u64 time; u32 *uaddr2; } ;
179 struct __anonstruct_nanosleep_100 { clockid_t clockid; struct timespec *rmtp; struct compat_timespec *compat_rmtp; u64 expires; } ;
179 struct pollfd ;
179 struct __anonstruct_poll_101 { struct pollfd *ufds; int nfds; int has_timeout; unsigned long tv_sec; unsigned long tv_nsec; } ;
179 union __anonunion____missing_field_name_98 { struct __anonstruct_futex_99 futex; struct __anonstruct_nanosleep_100 nanosleep; struct __anonstruct_poll_101 poll; } ;
179 struct restart_block { long int (*fn)(struct restart_block *); union __anonunion____missing_field_name_98 __annonCompField30; } ;
416 struct seqcount { unsigned int sequence; struct lockdep_map dep_map; } ;
52 typedef struct seqcount seqcount_t;
407 struct __anonstruct_seqlock_t_116 { struct seqcount seqcount; spinlock_t lock; } ;
407 typedef struct __anonstruct_seqlock_t_116 seqlock_t;
12 struct __wait_queue ;
12 typedef struct __wait_queue wait_queue_t;
15 struct __wait_queue { unsigned int flags; void *private; int (*func)(wait_queue_t *, unsigned int, int, void *); struct list_head task_list; } ;
38 struct __wait_queue_head { spinlock_t lock; struct list_head task_list; } ;
43 typedef struct __wait_queue_head wait_queue_head_t;
1234 struct completion { unsigned int done; wait_queue_head_t wait; } ;
108 struct timespec { __kernel_time_t tv_sec; long tv_nsec; } ;
7 typedef __s64 time64_t;
446 union ktime { s64 tv64; } ;
41 typedef union ktime ktime_t;
1143 union __anonunion____missing_field_name_117 { unsigned long bitmap[4U]; struct callback_head callback_head; } ;
1143 struct idr_layer { int prefix; int layer; struct idr_layer *ary[256U]; int count; union __anonunion____missing_field_name_117 __annonCompField31; } ;
41 struct idr { struct idr_layer *hint; struct idr_layer *top; int layers; int cur; spinlock_t lock; int id_free_cnt; struct idr_layer *id_free; } ;
124 struct ida_bitmap { long nr_busy; unsigned long bitmap[15U]; } ;
167 struct ida { struct idr idr; struct ida_bitmap *free_bitmap; } ;
199 struct rb_node { unsigned long __rb_parent_color; struct rb_node *rb_right; struct rb_node *rb_left; } ;
41 struct rb_root { struct rb_node *rb_node; } ;
100 struct dentry ;
101 struct iattr ;
102 struct vm_area_struct ;
103 struct super_block ;
104 struct file_system_type ;
105 struct kernfs_open_node ;
106 struct kernfs_iattrs ;
129 struct kernfs_root ;
129 struct kernfs_elem_dir { unsigned long subdirs; struct rb_root children; struct kernfs_root *root; } ;
85 struct kernfs_node ;
85 struct kernfs_elem_symlink { struct kernfs_node *target_kn; } ;
89 struct kernfs_ops ;
89 struct kernfs_elem_attr { const struct kernfs_ops *ops; struct kernfs_open_node *open; loff_t size; struct kernfs_node *notify_next; } ;
96 union __anonunion____missing_field_name_126 { struct kernfs_elem_dir dir; struct kernfs_elem_symlink symlink; struct kernfs_elem_attr attr; } ;
96 struct kernfs_node { atomic_t count; atomic_t active; struct lockdep_map dep_map; struct kernfs_node *parent; const char *name; struct rb_node rb; const void *ns; unsigned int hash; union __anonunion____missing_field_name_126 __annonCompField32; void *priv; unsigned short flags; umode_t mode; unsigned int ino; struct kernfs_iattrs *iattr; } ;
138 struct kernfs_syscall_ops { int (*remount_fs)(struct kernfs_root *, int *, char *); int (*show_options)(struct seq_file *, struct kernfs_root *); int (*mkdir)(struct kernfs_node *, const char *, umode_t ); int (*rmdir)(struct kernfs_node *); int (*rename)(struct kernfs_node *, struct kernfs_node *, const char *); int (*show_path)(struct seq_file *, struct kernfs_node *, struct kernfs_root *); } ;
157 struct kernfs_root { struct kernfs_node *kn; unsigned int flags; struct ida ino_ida; struct kernfs_syscall_ops *syscall_ops; struct list_head supers; wait_queue_head_t deactivate_waitq; } ;
173 struct vm_operations_struct ;
173 struct kernfs_open_file { struct kernfs_node *kn; struct file *file; void *priv; struct mutex mutex; struct mutex prealloc_mutex; int event; struct list_head list; char *prealloc_buf; size_t atomic_write_len; bool mmapped; const struct vm_operations_struct *vm_ops; } ;
191 struct kernfs_ops { int (*seq_show)(struct seq_file *, void *); void * (*seq_start)(struct seq_file *, loff_t *); void * (*seq_next)(struct seq_file *, void *, loff_t *); void (*seq_stop)(struct seq_file *, void *); ssize_t (*read)(struct kernfs_open_file *, char *, size_t , loff_t ); size_t atomic_write_len; bool prealloc; ssize_t (*write)(struct kernfs_open_file *, char *, size_t , loff_t ); int (*mmap)(struct kernfs_open_file *, struct vm_area_struct *); struct lock_class_key lockdep_key; } ;
288 struct inode ;
499 struct sock ;
500 struct kobject ;
501 enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ;
507 struct kobj_ns_type_operations { enum kobj_ns_type type; bool (*current_may_mount)(); void * (*grab_current_ns)(); const void * (*netlink_ns)(struct sock *); const void * (*initial_ns)(); void (*drop_ns)(void *); } ;
83 struct user_namespace ;
22 struct __anonstruct_kuid_t_129 { uid_t val; } ;
22 typedef struct __anonstruct_kuid_t_129 kuid_t;
27 struct __anonstruct_kgid_t_130 { gid_t val; } ;
27 typedef struct __anonstruct_kgid_t_130 kgid_t;
139 struct kstat { u64 ino; dev_t dev; umode_t mode; unsigned int nlink; kuid_t uid; kgid_t gid; dev_t rdev; loff_t size; struct timespec atime; struct timespec mtime; struct timespec ctime; unsigned long blksize; unsigned long long blocks; } ;
36 struct bin_attribute ;
37 struct attribute { const char *name; umode_t mode; bool ignore_lockdep; struct lock_class_key *key; struct lock_class_key skey; } ;
37 struct attribute_group { const char *name; umode_t (*is_visible)(struct kobject *, struct attribute *, int); umode_t (*is_bin_visible)(struct kobject *, struct bin_attribute *, int); struct attribute **attrs; struct bin_attribute **bin_attrs; } ;
92 struct bin_attribute { struct attribute attr; size_t size; void *private; ssize_t (*read)(struct file *, struct kobject *, struct bin_attribute *, char *, loff_t , size_t ); ssize_t (*write)(struct file *, struct kobject *, struct bin_attribute *, char *, loff_t , size_t ); int (*mmap)(struct file *, struct kobject *, struct bin_attribute *, struct vm_area_struct *); } ;
165 struct sysfs_ops { ssize_t (*show)(struct kobject *, struct attribute *, char *); ssize_t (*store)(struct kobject *, struct attribute *, const char *, size_t ); } ;
530 struct kref { atomic_t refcount; } ;
139 struct timer_list { struct hlist_node entry; unsigned long expires; void (*function)(unsigned long); unsigned long data; u32 flags; int start_pid; void *start_site; char start_comm[16U]; struct lockdep_map lockdep_map; } ;
254 struct hrtimer ;
255 enum hrtimer_restart ;
835 struct nsproxy ;
278 struct workqueue_struct ;
279 struct work_struct ;
54 struct work_struct { atomic_long_t data; struct list_head entry; void (*func)(struct work_struct *); struct lockdep_map lockdep_map; } ;
107 struct delayed_work { struct work_struct work; struct timer_list timer; struct workqueue_struct *wq; int cpu; } ;
52 struct kset ;
52 struct kobj_type ;
52 struct kobject { const char *name; struct list_head entry; struct kobject *parent; struct kset *kset; struct kobj_type *ktype; struct kernfs_node *sd; struct kref kref; struct delayed_work release; unsigned char state_initialized; unsigned char state_in_sysfs; unsigned char state_add_uevent_sent; unsigned char state_remove_uevent_sent; unsigned char uevent_suppress; } ;
115 struct kobj_type { void (*release)(struct kobject *); const struct sysfs_ops *sysfs_ops; struct attribute **default_attrs; const struct kobj_ns_type_operations * (*child_ns_type)(struct kobject *); const void * (*namespace)(struct kobject *); } ;
123 struct kobj_uevent_env { char *argv[3U]; char *envp[32U]; int envp_idx; char buf[2048U]; int buflen; } ;
131 struct kset_uevent_ops { const int (*filter)(struct kset *, struct kobject *); const const char * (*name)(struct kset *, struct kobject *); const int (*uevent)(struct kset *, struct kobject *, struct kobj_uevent_env *); } ;
148 struct kset { struct list_head list; spinlock_t list_lock; struct kobject kobj; const struct kset_uevent_ops *uevent_ops; } ;
223 struct klist_node ;
37 struct klist_node { void *n_klist; struct list_head n_node; struct kref n_ref; } ;
97 struct __anonstruct_nodemask_t_133 { unsigned long bits[16U]; } ;
97 typedef struct __anonstruct_nodemask_t_133 nodemask_t;
93 struct hlist_bl_node ;
93 struct hlist_bl_head { struct hlist_bl_node *first; } ;
36 struct hlist_bl_node { struct hlist_bl_node *next; struct hlist_bl_node **pprev; } ;
114 struct __anonstruct____missing_field_name_177 { spinlock_t lock; int count; } ;
114 union __anonunion____missing_field_name_176 { struct __anonstruct____missing_field_name_177 __annonCompField35; } ;
114 struct lockref { union __anonunion____missing_field_name_176 __annonCompField36; } ;
77 struct path ;
78 struct vfsmount ;
79 struct __anonstruct____missing_field_name_179 { u32 hash; u32 len; } ;
79 union __anonunion____missing_field_name_178 { struct __anonstruct____missing_field_name_179 __annonCompField37; u64 hash_len; } ;
79 struct qstr { union __anonunion____missing_field_name_178 __annonCompField38; const unsigned char *name; } ;
65 struct dentry_operations ;
65 union __anonunion____missing_field_name_180 { struct list_head d_lru; wait_queue_head_t *d_wait; } ;
65 union __anonunion_d_u_181 { struct hlist_node d_alias; struct hlist_bl_node d_in_lookup_hash; struct callback_head d_rcu; } ;
65 struct dentry { unsigned int d_flags; seqcount_t d_seq; struct hlist_bl_node d_hash; struct dentry *d_parent; struct qstr d_name; struct inode *d_inode; unsigned char d_iname[32U]; struct lockref d_lockref; const struct dentry_operations *d_op; struct super_block *d_sb; unsigned long d_time; void *d_fsdata; union __anonunion____missing_field_name_180 __annonCompField39; struct list_head d_child; struct list_head d_subdirs; union __anonunion_d_u_181 d_u; } ;
121 struct dentry_operations { int (*d_revalidate)(struct dentry *, unsigned int); int (*d_weak_revalidate)(struct dentry *, unsigned int); int (*d_hash)(const struct dentry *, struct qstr *); int (*d_compare)(const struct dentry *, unsigned int, const char *, const struct qstr *); int (*d_delete)(const struct dentry *); int (*d_init)(struct dentry *); void (*d_release)(struct dentry *); void (*d_prune)(struct dentry *); void (*d_iput)(struct dentry *, struct inode *); char * (*d_dname)(struct dentry *, char *, int); struct vfsmount * (*d_automount)(struct path *); int (*d_manage)(struct dentry *, bool ); struct dentry * (*d_real)(struct dentry *, const struct inode *, unsigned int); } ;
591 struct path { struct vfsmount *mnt; struct dentry *dentry; } ;
19 struct mem_cgroup ;
19 struct shrink_control { gfp_t gfp_mask; unsigned long nr_to_scan; int nid; struct mem_cgroup *memcg; } ;
27 struct shrinker { unsigned long int (*count_objects)(struct shrinker *, struct shrink_control *); unsigned long int (*scan_objects)(struct shrinker *, struct shrink_control *); int seeks; long batch; unsigned long flags; struct list_head list; atomic_long_t *nr_deferred; } ;
80 struct list_lru_one { struct list_head list; long nr_items; } ;
32 struct list_lru_memcg { struct list_lru_one *lru[0U]; } ;
37 struct list_lru_node { spinlock_t lock; struct list_lru_one lru; struct list_lru_memcg *memcg_lrus; } ;
47 struct list_lru { struct list_lru_node *node; struct list_head list; } ;
189 struct llist_node ;
64 struct llist_node { struct llist_node *next; } ;
63 struct __anonstruct____missing_field_name_183 { struct radix_tree_node *parent; void *private_data; } ;
63 union __anonunion____missing_field_name_182 { struct __anonstruct____missing_field_name_183 __annonCompField40; struct callback_head callback_head; } ;
63 struct radix_tree_node { unsigned char shift; unsigned char offset; unsigned int count; union __anonunion____missing_field_name_182 __annonCompField41; struct list_head private_list; void *slots[64U]; unsigned long tags[3U][1U]; } ;
106 struct radix_tree_root { gfp_t gfp_mask; struct radix_tree_node *rnode; } ;
523 enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ;
530 struct pid_namespace ;
530 struct upid { int nr; struct pid_namespace *ns; struct hlist_node pid_chain; } ;
56 struct pid { atomic_t count; unsigned int level; struct hlist_head tasks[3U]; struct callback_head rcu; struct upid numbers[1U]; } ;
68 struct pid_link { struct hlist_node node; struct pid *pid; } ;
174 struct rw_semaphore ;
175 struct rw_semaphore { atomic_long_t count; struct list_head wait_list; raw_spinlock_t wait_lock; struct optimistic_spin_queue osq; struct task_struct *owner; struct lockdep_map dep_map; } ;
22 struct kernel_cap_struct { __u32 cap[2U]; } ;
25 typedef struct kernel_cap_struct kernel_cap_t;
45 struct fiemap_extent { __u64 fe_logical; __u64 fe_physical; __u64 fe_length; __u64 fe_reserved64[2U]; __u32 fe_flags; __u32 fe_reserved[3U]; } ;
38 enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ;
58 struct pm_message { int event; } ;
64 typedef struct pm_message pm_message_t;
65 struct dev_pm_ops { int (*prepare)(struct device *); void (*complete)(struct device *); int (*suspend)(struct device *); int (*resume)(struct device *); int (*freeze)(struct device *); int (*thaw)(struct device *); int (*poweroff)(struct device *); int (*restore)(struct device *); int (*suspend_late)(struct device *); int (*resume_early)(struct device *); int (*freeze_late)(struct device *); int (*thaw_early)(struct device *); int (*poweroff_late)(struct device *); int (*restore_early)(struct device *); int (*suspend_noirq)(struct device *); int (*resume_noirq)(struct device *); int (*freeze_noirq)(struct device *); int (*thaw_noirq)(struct device *); int (*poweroff_noirq)(struct device *); int (*restore_noirq)(struct device *); int (*runtime_suspend)(struct device *); int (*runtime_resume)(struct device *); int (*runtime_idle)(struct device *); } ;
320 enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ;
327 enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ;
335 struct wakeup_source ;
336 struct wake_irq ;
337 struct pm_domain_data ;
338 struct pm_subsys_data { spinlock_t lock; unsigned int refcount; struct list_head clock_list; struct pm_domain_data *domain_data; } ;
556 struct dev_pm_qos ;
556 struct dev_pm_info { pm_message_t power_state; unsigned char can_wakeup; unsigned char async_suspend; bool is_prepared; bool is_suspended; bool is_noirq_suspended; bool is_late_suspended; bool early_init; bool direct_complete; spinlock_t lock; struct list_head entry; struct completion completion; struct wakeup_source *wakeup; bool wakeup_path; bool syscore; bool no_pm_callbacks; struct timer_list suspend_timer; unsigned long timer_expires; struct work_struct work; wait_queue_head_t wait_queue; struct wake_irq *wakeirq; atomic_t usage_count; atomic_t child_count; unsigned char disable_depth; unsigned char idle_notification; unsigned char request_pending; unsigned char deferred_resume; unsigned char run_wake; unsigned char runtime_auto; bool ignore_children; unsigned char no_callbacks; unsigned char irq_safe; unsigned char use_autosuspend; unsigned char timer_autosuspends; unsigned char memalloc_noio; enum rpm_request request; enum rpm_status runtime_status; int runtime_error; int autosuspend_delay; unsigned long last_busy; unsigned long active_jiffies; unsigned long suspended_jiffies; unsigned long accounting_timestamp; struct pm_subsys_data *subsys_data; void (*set_latency_tolerance)(struct device *, s32 ); struct dev_pm_qos *qos; } ;
616 struct dev_pm_domain { struct dev_pm_ops ops; void (*detach)(struct device *, bool ); int (*activate)(struct device *); void (*sync)(struct device *); void (*dismiss)(struct device *); } ;
144 struct pci_bus ;
26 struct ldt_struct ;
26 struct vdso_image ;
26 struct __anonstruct_mm_context_t_255 { struct ldt_struct *ldt; unsigned short ia32_compat; struct mutex lock; void *vdso; const struct vdso_image *vdso_image; atomic_t perf_rdpmc_allowed; } ;
26 typedef struct __anonstruct_mm_context_t_255 mm_context_t;
124 enum rcu_sync_type { RCU_SYNC = 0, RCU_SCHED_SYNC = 1, RCU_BH_SYNC = 2 } ;
130 struct rcu_sync { int gp_state; int gp_count; wait_queue_head_t gp_wait; int cb_state; struct callback_head cb_head; enum rcu_sync_type gp_type; } ;
65 struct percpu_rw_semaphore { struct rcu_sync rss; unsigned int *fast_read_ctr; struct rw_semaphore rw_sem; atomic_t slow_read_ctr; wait_queue_head_t write_waitq; } ;
87 struct block_device ;
88 struct io_context ;
89 struct cgroup_subsys_state ;
266 struct delayed_call { void (*fn)(void *); void *arg; } ;
261 struct backing_dev_info ;
262 struct bdi_writeback ;
263 struct export_operations ;
266 struct kiocb ;
267 struct pipe_inode_info ;
268 struct poll_table_struct ;
269 struct kstatfs ;
270 struct cred ;
271 struct swap_info_struct ;
272 struct iov_iter ;
273 struct fscrypt_info ;
274 struct fscrypt_operations ;
76 struct iattr { unsigned int ia_valid; umode_t ia_mode; kuid_t ia_uid; kgid_t ia_gid; loff_t ia_size; struct timespec ia_atime; struct timespec ia_mtime; struct timespec ia_ctime; struct file *ia_file; } ;
247 typedef unsigned int isolate_mode_t;
213 struct dquot ;
214 struct kqid ;
19 typedef __kernel_uid32_t projid_t;
23 struct __anonstruct_kprojid_t_271 { projid_t val; } ;
23 typedef struct __anonstruct_kprojid_t_271 kprojid_t;
181 enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ;
66 typedef long long qsize_t;
67 union __anonunion____missing_field_name_272 { kuid_t uid; kgid_t gid; kprojid_t projid; } ;
67 struct kqid { union __anonunion____missing_field_name_272 __annonCompField43; enum quota_type type; } ;
194 struct mem_dqblk { qsize_t dqb_bhardlimit; qsize_t dqb_bsoftlimit; qsize_t dqb_curspace; qsize_t dqb_rsvspace; qsize_t dqb_ihardlimit; qsize_t dqb_isoftlimit; qsize_t dqb_curinodes; time64_t dqb_btime; time64_t dqb_itime; } ;
216 struct quota_format_type ;
217 struct mem_dqinfo { struct quota_format_type *dqi_format; int dqi_fmt_id; struct list_head dqi_dirty_list; unsigned long dqi_flags; unsigned int dqi_bgrace; unsigned int dqi_igrace; qsize_t dqi_max_spc_limit; qsize_t dqi_max_ino_limit; void *dqi_priv; } ;
282 struct dquot { struct hlist_node dq_hash; struct list_head dq_inuse; struct list_head dq_free; struct list_head dq_dirty; struct mutex dq_lock; atomic_t dq_count; wait_queue_head_t dq_wait_unused; struct super_block *dq_sb; struct kqid dq_id; loff_t dq_off; unsigned long dq_flags; struct mem_dqblk dq_dqb; } ;
309 struct quota_format_ops { int (*check_quota_file)(struct super_block *, int); int (*read_file_info)(struct super_block *, int); int (*write_file_info)(struct super_block *, int); int (*free_file_info)(struct super_block *, int); int (*read_dqblk)(struct dquot *); int (*commit_dqblk)(struct dquot *); int (*release_dqblk)(struct dquot *); int (*get_next_id)(struct super_block *, struct kqid *); } ;
321 struct dquot_operations { int (*write_dquot)(struct dquot *); struct dquot * (*alloc_dquot)(struct super_block *, int); void (*destroy_dquot)(struct dquot *); int (*acquire_dquot)(struct dquot *); int (*release_dquot)(struct dquot *); int (*mark_dirty)(struct dquot *); int (*write_info)(struct super_block *, int); qsize_t * (*get_reserved_space)(struct inode *); int (*get_projid)(struct inode *, kprojid_t *); int (*get_next_id)(struct super_block *, struct kqid *); } ;
338 struct qc_dqblk { int d_fieldmask; u64 d_spc_hardlimit; u64 d_spc_softlimit; u64 d_ino_hardlimit; u64 d_ino_softlimit; u64 d_space; u64 d_ino_count; s64 d_ino_timer; s64 d_spc_timer; int d_ino_warns; int d_spc_warns; u64 d_rt_spc_hardlimit; u64 d_rt_spc_softlimit; u64 d_rt_space; s64 d_rt_spc_timer; int d_rt_spc_warns; } ;
361 struct qc_type_state { unsigned int flags; unsigned int spc_timelimit; unsigned int ino_timelimit; unsigned int rt_spc_timelimit; unsigned int spc_warnlimit; unsigned int ino_warnlimit; unsigned int rt_spc_warnlimit; unsigned long long ino; blkcnt_t blocks; blkcnt_t nextents; } ;
407 struct qc_state { unsigned int s_incoredqs; struct qc_type_state s_state[3U]; } ;
418 struct qc_info { int i_fieldmask; unsigned int i_flags; unsigned int i_spc_timelimit; unsigned int i_ino_timelimit; unsigned int i_rt_spc_timelimit; unsigned int i_spc_warnlimit; unsigned int i_ino_warnlimit; unsigned int i_rt_spc_warnlimit; } ;
431 struct quotactl_ops { int (*quota_on)(struct super_block *, int, int, struct path *); int (*quota_off)(struct super_block *, int); int (*quota_enable)(struct super_block *, unsigned int); int (*quota_disable)(struct super_block *, unsigned int); int (*quota_sync)(struct super_block *, int); int (*set_info)(struct super_block *, int, struct qc_info *); int (*get_dqblk)(struct super_block *, struct kqid , struct qc_dqblk *); int (*get_nextdqblk)(struct super_block *, struct kqid *, struct qc_dqblk *); int (*set_dqblk)(struct super_block *, struct kqid , struct qc_dqblk *); int (*get_state)(struct super_block *, struct qc_state *); int (*rm_xquota)(struct super_block *, unsigned int); } ;
447 struct quota_format_type { int qf_fmt_id; const struct quota_format_ops *qf_ops; struct module *qf_owner; struct quota_format_type *qf_next; } ;
511 struct quota_info { unsigned int flags; struct mutex dqio_mutex; struct mutex dqonoff_mutex; struct inode *files[3U]; struct mem_dqinfo info[3U]; const struct quota_format_ops *ops[3U]; } ;
541 struct address_space ;
542 struct writeback_control ;
543 struct kiocb { struct file *ki_filp; loff_t ki_pos; void (*ki_complete)(struct kiocb *, long, long); void *private; int ki_flags; } ;
367 struct address_space_operations { int (*writepage)(struct page *, struct writeback_control *); int (*readpage)(struct file *, struct page *); int (*writepages)(struct address_space *, struct writeback_control *); int (*set_page_dirty)(struct page *); int (*readpages)(struct file *, struct address_space *, struct list_head *, unsigned int); int (*write_begin)(struct file *, struct address_space *, loff_t , unsigned int, unsigned int, struct page **, void **); int (*write_end)(struct file *, struct address_space *, loff_t , unsigned int, unsigned int, struct page *, void *); sector_t (*bmap)(struct address_space *, sector_t ); void (*invalidatepage)(struct page *, unsigned int, unsigned int); int (*releasepage)(struct page *, gfp_t ); void (*freepage)(struct page *); ssize_t (*direct_IO)(struct kiocb *, struct iov_iter *); int (*migratepage)(struct address_space *, struct page *, struct page *, enum migrate_mode ); bool (*isolate_page)(struct page *, isolate_mode_t ); void (*putback_page)(struct page *); int (*launder_page)(struct page *); int (*is_partially_uptodate)(struct page *, unsigned long, unsigned long); void (*is_dirty_writeback)(struct page *, bool *, bool *); int (*error_remove_page)(struct address_space *, struct page *); int (*swap_activate)(struct swap_info_struct *, struct file *, sector_t *); void (*swap_deactivate)(struct file *); } ;
426 struct address_space { struct inode *host; struct radix_tree_root page_tree; spinlock_t tree_lock; atomic_t i_mmap_writable; struct rb_root i_mmap; struct rw_semaphore i_mmap_rwsem; unsigned long nrpages; unsigned long nrexceptional; unsigned long writeback_index; const struct address_space_operations *a_ops; unsigned long flags; spinlock_t private_lock; struct list_head private_list; void *private_data; } ;
447 struct request_queue ;
448 struct hd_struct ;
448 struct gendisk ;
448 struct block_device { dev_t bd_dev; int bd_openers; struct inode *bd_inode; struct super_block *bd_super; struct mutex bd_mutex; void *bd_claiming; void *bd_holder; int bd_holders; bool bd_write_holder; struct list_head bd_holder_disks; struct block_device *bd_contains; unsigned int bd_block_size; struct hd_struct *bd_part; unsigned int bd_part_count; int bd_invalidated; struct gendisk *bd_disk; struct request_queue *bd_queue; struct list_head bd_list; unsigned long bd_private; int bd_fsfreeze_count; struct mutex bd_fsfreeze_mutex; } ;
563 struct posix_acl ;
589 struct inode_operations ;
589 union __anonunion____missing_field_name_277 { const unsigned int i_nlink; unsigned int __i_nlink; } ;
589 union __anonunion____missing_field_name_278 { struct hlist_head i_dentry; struct callback_head i_rcu; } ;
589 struct file_lock_context ;
589 struct cdev ;
589 union __anonunion____missing_field_name_279 { struct pipe_inode_info *i_pipe; struct block_device *i_bdev; struct cdev *i_cdev; char *i_link; unsigned int i_dir_seq; } ;
589 struct inode { umode_t i_mode; unsigned short i_opflags; kuid_t i_uid; kgid_t i_gid; unsigned int i_flags; struct posix_acl *i_acl; struct posix_acl *i_default_acl; const struct inode_operations *i_op; struct super_block *i_sb; struct address_space *i_mapping; void *i_security; unsigned long i_ino; union __anonunion____missing_field_name_277 __annonCompField44; dev_t i_rdev; loff_t i_size; struct timespec i_atime; struct timespec i_mtime; struct timespec i_ctime; spinlock_t i_lock; unsigned short i_bytes; unsigned int i_blkbits; blkcnt_t i_blocks; unsigned long i_state; struct rw_semaphore i_rwsem; unsigned long dirtied_when; unsigned long dirtied_time_when; struct hlist_node i_hash; struct list_head i_io_list; struct bdi_writeback *i_wb; int i_wb_frn_winner; u16 i_wb_frn_avg_time; u16 i_wb_frn_history; struct list_head i_lru; struct list_head i_sb_list; struct list_head i_wb_list; union __anonunion____missing_field_name_278 __annonCompField45; u64 i_version; atomic_t i_count; atomic_t i_dio_count; atomic_t i_writecount; atomic_t i_readcount; const struct file_operations *i_fop; struct file_lock_context *i_flctx; struct address_space i_data; struct list_head i_devices; union __anonunion____missing_field_name_279 __annonCompField46; __u32 i_generation; __u32 i_fsnotify_mask; struct hlist_head i_fsnotify_marks; struct fscrypt_info *i_crypt_info; void *i_private; } ;
843 struct fown_struct { rwlock_t lock; struct pid *pid; enum pid_type pid_type; kuid_t uid; kuid_t euid; int signum; } ;
851 struct file_ra_state { unsigned long start; unsigned int size; unsigned int async_size; unsigned int ra_pages; unsigned int mmap_miss; loff_t prev_pos; } ;
874 union __anonunion_f_u_280 { struct llist_node fu_llist; struct callback_head fu_rcuhead; } ;
874 struct file { union __anonunion_f_u_280 f_u; struct path f_path; struct inode *f_inode; const struct file_operations *f_op; spinlock_t f_lock; atomic_long_t f_count; unsigned int f_flags; fmode_t f_mode; struct mutex f_pos_lock; loff_t f_pos; struct fown_struct f_owner; const struct cred *f_cred; struct file_ra_state f_ra; u64 f_version; void *f_security; void *private_data; struct list_head f_ep_links; struct list_head f_tfile_llink; struct address_space *f_mapping; } ;
959 typedef void *fl_owner_t;
960 struct file_lock ;
961 struct file_lock_operations { void (*fl_copy_lock)(struct file_lock *, struct file_lock *); void (*fl_release_private)(struct file_lock *); } ;
967 struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock *, struct file_lock *); unsigned long int (*lm_owner_key)(struct file_lock *); fl_owner_t (*lm_get_owner)(fl_owner_t ); void (*lm_put_owner)(fl_owner_t ); void (*lm_notify)(struct file_lock *); int (*lm_grant)(struct file_lock *, int); bool (*lm_break)(struct file_lock *); int (*lm_change)(struct file_lock *, int, struct list_head *); void (*lm_setup)(struct file_lock *, void **); } ;
994 struct nlm_lockowner ;
995 struct nfs_lock_info { u32 state; struct nlm_lockowner *owner; struct list_head list; } ;
14 struct nfs4_lock_state ;
15 struct nfs4_lock_info { struct nfs4_lock_state *owner; } ;
19 struct fasync_struct ;
19 struct __anonstruct_afs_282 { struct list_head link; int state; } ;
19 union __anonunion_fl_u_281 { struct nfs_lock_info nfs_fl; struct nfs4_lock_info nfs4_fl; struct __anonstruct_afs_282 afs; } ;
19 struct file_lock { struct file_lock *fl_next; struct list_head fl_list; struct hlist_node fl_link; struct list_head fl_block; fl_owner_t fl_owner; unsigned int fl_flags; unsigned char fl_type; unsigned int fl_pid; int fl_link_cpu; struct pid *fl_nspid; wait_queue_head_t fl_wait; struct file *fl_file; loff_t fl_start; loff_t fl_end; struct fasync_struct *fl_fasync; unsigned long fl_break_time; unsigned long fl_downgrade_time; const struct file_lock_operations *fl_ops; const struct lock_manager_operations *fl_lmops; union __anonunion_fl_u_281 fl_u; } ;
1047 struct file_lock_context { spinlock_t flc_lock; struct list_head flc_flock; struct list_head flc_posix; struct list_head flc_lease; } ;
1102 struct files_struct ;
1255 struct fasync_struct { spinlock_t fa_lock; int magic; int fa_fd; struct fasync_struct *fa_next; struct file *fa_file; struct callback_head fa_rcu; } ;
1290 struct sb_writers { int frozen; wait_queue_head_t wait_unfrozen; struct percpu_rw_semaphore rw_sem[3U]; } ;
1320 struct super_operations ;
1320 struct xattr_handler ;
1320 struct mtd_info ;
1320 struct super_block { struct list_head s_list; dev_t s_dev; unsigned char s_blocksize_bits; unsigned long s_blocksize; loff_t s_maxbytes; struct file_system_type *s_type; const struct super_operations *s_op; const struct dquot_operations *dq_op; const struct quotactl_ops *s_qcop; const struct export_operations *s_export_op; unsigned long s_flags; unsigned long s_iflags; unsigned long s_magic; struct dentry *s_root; struct rw_semaphore s_umount; int s_count; atomic_t s_active; void *s_security; const struct xattr_handler **s_xattr; const struct fscrypt_operations *s_cop; struct hlist_bl_head s_anon; struct list_head s_mounts; struct block_device *s_bdev; struct backing_dev_info *s_bdi; struct mtd_info *s_mtd; struct hlist_node s_instances; unsigned int s_quota_types; struct quota_info s_dquot; struct sb_writers s_writers; char s_id[32U]; u8 s_uuid[16U]; void *s_fs_info; unsigned int s_max_links; fmode_t s_mode; u32 s_time_gran; struct mutex s_vfs_rename_mutex; char *s_subtype; char *s_options; const struct dentry_operations *s_d_op; int cleancache_poolid; struct shrinker s_shrink; atomic_long_t s_remove_count; int s_readonly_remount; struct workqueue_struct *s_dio_done_wq; struct hlist_head s_pins; struct user_namespace *s_user_ns; struct list_lru s_dentry_lru; struct list_lru s_inode_lru; struct callback_head rcu; struct work_struct destroy_work; struct mutex s_sync_lock; int s_stack_depth; spinlock_t s_inode_list_lock; struct list_head s_inodes; spinlock_t s_inode_wblist_lock; struct list_head s_inodes_wb; } ;
1603 struct fiemap_extent_info { unsigned int fi_flags; unsigned int fi_extents_mapped; unsigned int fi_extents_max; struct fiemap_extent *fi_extents_start; } ;
1616 struct dir_context ;
1641 struct dir_context { int (*actor)(struct dir_context *, const char *, int, loff_t , u64 , unsigned int); loff_t pos; } ;
1648 struct file_operations { struct module *owner; loff_t (*llseek)(struct file *, loff_t , int); ssize_t (*read)(struct file *, char *, size_t , loff_t *); ssize_t (*write)(struct file *, const char *, size_t , loff_t *); ssize_t (*read_iter)(struct kiocb *, struct iov_iter *); ssize_t (*write_iter)(struct kiocb *, struct iov_iter *); int (*iterate)(struct file *, struct dir_context *); int (*iterate_shared)(struct file *, struct dir_context *); unsigned int (*poll)(struct file *, struct poll_table_struct *); long int (*unlocked_ioctl)(struct file *, unsigned int, unsigned long); long int (*compat_ioctl)(struct file *, unsigned int, unsigned long); int (*mmap)(struct file *, struct vm_area_struct *); int (*open)(struct inode *, struct file *); int (*flush)(struct file *, fl_owner_t ); int (*release)(struct inode *, struct file *); int (*fsync)(struct file *, loff_t , loff_t , int); int (*aio_fsync)(struct kiocb *, int); int (*fasync)(int, struct file *, int); int (*lock)(struct file *, int, struct file_lock *); ssize_t (*sendpage)(struct file *, struct page *, int, size_t , loff_t *, int); unsigned long int (*get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); int (*check_flags)(int); int (*flock)(struct file *, int, struct file_lock *); ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, loff_t *, size_t , unsigned int); ssize_t (*splice_read)(struct file *, loff_t *, struct pipe_inode_info *, size_t , unsigned int); int (*setlease)(struct file *, long, struct file_lock **, void **); long int (*fallocate)(struct file *, int, loff_t , loff_t ); void (*show_fdinfo)(struct seq_file *, struct file *); ssize_t (*copy_file_range)(struct file *, loff_t , struct file *, loff_t , size_t , unsigned int); int (*clone_file_range)(struct file *, loff_t , struct file *, loff_t , u64 ); ssize_t (*dedupe_file_range)(struct file *, u64 , u64 , struct file *, u64 ); } ;
1717 struct inode_operations { struct dentry * (*lookup)(struct inode *, struct dentry *, unsigned int); const char * (*get_link)(struct dentry *, struct inode *, struct delayed_call *); int (*permission)(struct inode *, int); struct posix_acl * (*get_acl)(struct inode *, int); int (*readlink)(struct dentry *, char *, int); int (*create)(struct inode *, struct dentry *, umode_t , bool ); int (*link)(struct dentry *, struct inode *, struct dentry *); int (*unlink)(struct inode *, struct dentry *); int (*symlink)(struct inode *, struct dentry *, const char *); int (*mkdir)(struct inode *, struct dentry *, umode_t ); int (*rmdir)(struct inode *, struct dentry *); int (*mknod)(struct inode *, struct dentry *, umode_t , dev_t ); int (*rename)(struct inode *, struct dentry *, struct inode *, struct dentry *); int (*rename2)(struct inode *, struct dentry *, struct inode *, struct dentry *, unsigned int); int (*setattr)(struct dentry *, struct iattr *); int (*getattr)(struct vfsmount *, struct dentry *, struct kstat *); int (*setxattr)(struct dentry *, struct inode *, const char *, const void *, size_t , int); ssize_t (*getxattr)(struct dentry *, struct inode *, const char *, void *, size_t ); ssize_t (*listxattr)(struct dentry *, char *, size_t ); int (*removexattr)(struct dentry *, const char *); int (*fiemap)(struct inode *, struct fiemap_extent_info *, u64 , u64 ); int (*update_time)(struct inode *, struct timespec *, int); int (*atomic_open)(struct inode *, struct dentry *, struct file *, unsigned int, umode_t , int *); int (*tmpfile)(struct inode *, struct dentry *, umode_t ); int (*set_acl)(struct inode *, struct posix_acl *, int); } ;
1774 struct super_operations { struct inode * (*alloc_inode)(struct super_block *); void (*destroy_inode)(struct inode *); void (*dirty_inode)(struct inode *, int); int (*write_inode)(struct inode *, struct writeback_control *); int (*drop_inode)(struct inode *); void (*evict_inode)(struct inode *); void (*put_super)(struct super_block *); int (*sync_fs)(struct super_block *, int); int (*freeze_super)(struct super_block *); int (*freeze_fs)(struct super_block *); int (*thaw_super)(struct super_block *); int (*unfreeze_fs)(struct super_block *); int (*statfs)(struct dentry *, struct kstatfs *); int (*remount_fs)(struct super_block *, int *, char *); void (*umount_begin)(struct super_block *); int (*show_options)(struct seq_file *, struct dentry *); int (*show_devname)(struct seq_file *, struct dentry *); int (*show_path)(struct seq_file *, struct dentry *); int (*show_stats)(struct seq_file *, struct dentry *); ssize_t (*quota_read)(struct super_block *, int, char *, size_t , loff_t ); ssize_t (*quota_write)(struct super_block *, int, const char *, size_t , loff_t ); struct dquot ** (*get_dquots)(struct inode *); int (*bdev_try_to_free_page)(struct super_block *, struct page *, gfp_t ); long int (*nr_cached_objects)(struct super_block *, struct shrink_control *); long int (*free_cached_objects)(struct super_block *, struct shrink_control *); } ;
2018 struct file_system_type { const char *name; int fs_flags; struct dentry * (*mount)(struct file_system_type *, int, const char *, void *); void (*kill_sb)(struct super_block *); struct module *owner; struct file_system_type *next; struct hlist_head fs_supers; struct lock_class_key s_lock_key; struct lock_class_key s_umount_key; struct lock_class_key s_vfs_rename_key; struct lock_class_key s_writers_key[3U]; struct lock_class_key i_lock_key; struct lock_class_key i_mutex_key; struct lock_class_key i_mutex_dir_key; } ;
2351 struct kmem_cache ;
3193 struct assoc_array_ptr ;
3193 struct assoc_array { struct assoc_array_ptr *root; unsigned long nr_leaves_on_tree; } ;
31 typedef int32_t key_serial_t;
34 typedef uint32_t key_perm_t;
35 struct key ;
36 struct user_struct ;
37 struct signal_struct ;
38 struct key_type ;
42 struct keyring_index_key { struct key_type *type; const char *description; size_t desc_len; } ;
91 union key_payload { void *rcu_data0; void *data[4U]; } ;
128 union __anonunion____missing_field_name_283 { struct list_head graveyard_link; struct rb_node serial_node; } ;
128 struct key_user ;
128 union __anonunion____missing_field_name_284 { time_t expiry; time_t revoked_at; } ;
128 struct __anonstruct____missing_field_name_286 { struct key_type *type; char *description; } ;
128 union __anonunion____missing_field_name_285 { struct keyring_index_key index_key; struct __anonstruct____missing_field_name_286 __annonCompField49; } ;
128 struct __anonstruct____missing_field_name_288 { struct list_head name_link; struct assoc_array keys; } ;
128 union __anonunion____missing_field_name_287 { union key_payload payload; struct __anonstruct____missing_field_name_288 __annonCompField51; int reject_error; } ;
128 struct key { atomic_t usage; key_serial_t serial; union __anonunion____missing_field_name_283 __annonCompField47; struct rw_semaphore sem; struct key_user *user; void *security; union __anonunion____missing_field_name_284 __annonCompField48; time_t last_used_at; kuid_t uid; kgid_t gid; key_perm_t perm; unsigned short quotalen; unsigned short datalen; unsigned long flags; union __anonunion____missing_field_name_285 __annonCompField50; union __anonunion____missing_field_name_287 __annonCompField52; int (*restrict_link)(struct key *, const struct key_type *, const union key_payload *); } ;
377 struct audit_context ;
27 struct group_info { atomic_t usage; int ngroups; int nblocks; kgid_t small_block[32U]; kgid_t *blocks[0U]; } ;
90 struct cred { atomic_t usage; atomic_t subscribers; void *put_addr; unsigned int magic; kuid_t uid; kgid_t gid; kuid_t suid; kgid_t sgid; kuid_t euid; kgid_t egid; kuid_t fsuid; kgid_t fsgid; unsigned int securebits; kernel_cap_t cap_inheritable; kernel_cap_t cap_permitted; kernel_cap_t cap_effective; kernel_cap_t cap_bset; kernel_cap_t cap_ambient; unsigned char jit_keyring; struct key *session_keyring; struct key *process_keyring; struct key *thread_keyring; struct key *request_key_auth; void *security; struct user_struct *user; struct user_namespace *user_ns; struct group_info *group_info; struct callback_head rcu; } ;
377 struct seq_file { char *buf; size_t size; size_t from; size_t count; size_t pad_until; loff_t index; loff_t read_pos; u64 version; struct mutex lock; const struct seq_operations *op; int poll_event; const struct file *file; void *private; } ;
30 struct seq_operations { void * (*start)(struct seq_file *, loff_t *); void (*stop)(struct seq_file *, void *); void * (*next)(struct seq_file *, void *, loff_t *); int (*show)(struct seq_file *, void *); } ;
222 struct pinctrl ;
223 struct pinctrl_state ;
194 struct dev_pin_info { struct pinctrl *p; struct pinctrl_state *default_state; struct pinctrl_state *init_state; struct pinctrl_state *sleep_state; struct pinctrl_state *idle_state; } ;
84 struct plist_node { int prio; struct list_head prio_list; struct list_head node_list; } ;
58 struct arch_uprobe_task { unsigned long saved_scratch_register; unsigned int saved_trap_nr; unsigned int saved_tf; } ;
66 enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ;
73 struct __anonstruct____missing_field_name_294 { struct arch_uprobe_task autask; unsigned long vaddr; } ;
73 struct __anonstruct____missing_field_name_295 { struct callback_head dup_xol_work; unsigned long dup_xol_addr; } ;
73 union __anonunion____missing_field_name_293 { struct __anonstruct____missing_field_name_294 __annonCompField55; struct __anonstruct____missing_field_name_295 __annonCompField56; } ;
73 struct uprobe ;
73 struct return_instance ;
73 struct uprobe_task { enum uprobe_task_state state; union __anonunion____missing_field_name_293 __annonCompField57; struct uprobe *active_uprobe; unsigned long xol_vaddr; struct return_instance *return_instances; unsigned int depth; } ;
94 struct return_instance { struct uprobe *uprobe; unsigned long func; unsigned long stack; unsigned long orig_ret_vaddr; bool chained; struct return_instance *next; } ;
110 struct xol_area ;
111 struct uprobes_state { struct xol_area *xol_area; } ;
150 union __anonunion____missing_field_name_296 { struct address_space *mapping; void *s_mem; atomic_t compound_mapcount; } ;
150 union __anonunion____missing_field_name_297 { unsigned long index; void *freelist; } ;
150 struct __anonstruct____missing_field_name_301 { unsigned short inuse; unsigned short objects; unsigned char frozen; } ;
150 union __anonunion____missing_field_name_300 { atomic_t _mapcount; unsigned int active; struct __anonstruct____missing_field_name_301 __annonCompField60; int units; } ;
150 struct __anonstruct____missing_field_name_299 { union __anonunion____missing_field_name_300 __annonCompField61; atomic_t _refcount; } ;
150 union __anonunion____missing_field_name_298 { unsigned long counters; struct __anonstruct____missing_field_name_299 __annonCompField62; } ;
150 struct dev_pagemap ;
150 struct __anonstruct____missing_field_name_303 { struct page *next; int pages; int pobjects; } ;
150 struct __anonstruct____missing_field_name_304 { unsigned long compound_head; unsigned int compound_dtor; unsigned int compound_order; } ;
150 struct __anonstruct____missing_field_name_305 { unsigned long __pad; pgtable_t pmd_huge_pte; } ;
150 union __anonunion____missing_field_name_302 { struct list_head lru; struct dev_pagemap *pgmap; struct __anonstruct____missing_field_name_303 __annonCompField64; struct callback_head callback_head; struct __anonstruct____missing_field_name_304 __annonCompField65; struct __anonstruct____missing_field_name_305 __annonCompField66; } ;
150 union __anonunion____missing_field_name_306 { unsigned long private; spinlock_t *ptl; struct kmem_cache *slab_cache; } ;
150 struct page { unsigned long flags; union __anonunion____missing_field_name_296 __annonCompField58; union __anonunion____missing_field_name_297 __annonCompField59; union __anonunion____missing_field_name_298 __annonCompField63; union __anonunion____missing_field_name_302 __annonCompField67; union __anonunion____missing_field_name_306 __annonCompField68; struct mem_cgroup *mem_cgroup; } ;
197 struct page_frag { struct page *page; __u32 offset; __u32 size; } ;
282 struct userfaultfd_ctx ;
282 struct vm_userfaultfd_ctx { struct userfaultfd_ctx *ctx; } ;
289 struct __anonstruct_shared_307 { struct rb_node rb; unsigned long rb_subtree_last; } ;
289 struct anon_vma ;
289 struct mempolicy ;
289 struct vm_area_struct { unsigned long vm_start; unsigned long vm_end; struct vm_area_struct *vm_next; struct vm_area_struct *vm_prev; struct rb_node vm_rb; unsigned long rb_subtree_gap; struct mm_struct *vm_mm; pgprot_t vm_page_prot; unsigned long vm_flags; struct __anonstruct_shared_307 shared; struct list_head anon_vma_chain; struct anon_vma *anon_vma; const struct vm_operations_struct *vm_ops; unsigned long vm_pgoff; struct file *vm_file; void *vm_private_data; struct mempolicy *vm_policy; struct vm_userfaultfd_ctx vm_userfaultfd_ctx; } ;
362 struct core_thread { struct task_struct *task; struct core_thread *next; } ;
367 struct core_state { atomic_t nr_threads; struct core_thread dumper; struct completion startup; } ;
381 struct task_rss_stat { int events; int count[4U]; } ;
389 struct mm_rss_stat { atomic_long_t count[4U]; } ;
394 struct kioctx_table ;
395 struct linux_binfmt ;
395 struct mmu_notifier_mm ;
395 struct mm_struct { struct vm_area_struct *mmap; struct rb_root mm_rb; u32 vmacache_seqnum; unsigned long int (*get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); unsigned long mmap_base; unsigned long mmap_legacy_base; unsigned long task_size; unsigned long highest_vm_end; pgd_t *pgd; atomic_t mm_users; atomic_t mm_count; atomic_long_t nr_ptes; atomic_long_t nr_pmds; int map_count; spinlock_t page_table_lock; struct rw_semaphore mmap_sem; struct list_head mmlist; unsigned long hiwater_rss; unsigned long hiwater_vm; unsigned long total_vm; unsigned long locked_vm; unsigned long pinned_vm; unsigned long data_vm; unsigned long exec_vm; unsigned long stack_vm; unsigned long def_flags; unsigned long start_code; unsigned long end_code; unsigned long start_data; unsigned long end_data; unsigned long start_brk; unsigned long brk; unsigned long start_stack; unsigned long arg_start; unsigned long arg_end; unsigned long env_start; unsigned long env_end; unsigned long saved_auxv[46U]; struct mm_rss_stat rss_stat; struct linux_binfmt *binfmt; cpumask_var_t cpu_vm_mask_var; mm_context_t context; unsigned long flags; struct core_state *core_state; spinlock_t ioctx_lock; struct kioctx_table *ioctx_table; struct task_struct *owner; struct file *exe_file; struct mmu_notifier_mm *mmu_notifier_mm; struct cpumask cpumask_allocation; unsigned long numa_next_scan; unsigned long numa_scan_offset; int numa_scan_seq; bool tlb_flush_pending; struct uprobes_state uprobes_state; void *bd_addr; atomic_long_t hugetlb_usage; struct work_struct async_put_work; } ;
565 struct vm_fault ;
4 typedef unsigned long cputime_t;
25 struct sem_undo_list ;
25 struct sysv_sem { struct sem_undo_list *undo_list; } ;
26 struct sysv_shm { struct list_head shm_clist; } ;
24 struct __anonstruct_sigset_t_309 { unsigned long sig[1U]; } ;
24 typedef struct __anonstruct_sigset_t_309 sigset_t;
25 struct siginfo ;
17 typedef void __signalfn_t(int);
18 typedef __signalfn_t *__sighandler_t;
20 typedef void __restorefn_t();
21 typedef __restorefn_t *__sigrestore_t;
34 union sigval { int sival_int; void *sival_ptr; } ;
10 typedef union sigval sigval_t;
11 struct __anonstruct__kill_311 { __kernel_pid_t _pid; __kernel_uid32_t _uid; } ;
11 struct __anonstruct__timer_312 { __kernel_timer_t _tid; int _overrun; char _pad[0U]; sigval_t _sigval; int _sys_private; } ;
11 struct __anonstruct__rt_313 { __kernel_pid_t _pid; __kernel_uid32_t _uid; sigval_t _sigval; } ;
11 struct __anonstruct__sigchld_314 { __kernel_pid_t _pid; __kernel_uid32_t _uid; int _status; __kernel_clock_t _utime; __kernel_clock_t _stime; } ;
11 struct __anonstruct__addr_bnd_317 { void *_lower; void *_upper; } ;
11 union __anonunion____missing_field_name_316 { struct __anonstruct__addr_bnd_317 _addr_bnd; __u32 _pkey; } ;
11 struct __anonstruct__sigfault_315 { void *_addr; short _addr_lsb; union __anonunion____missing_field_name_316 __annonCompField69; } ;
11 struct __anonstruct__sigpoll_318 { long _band; int _fd; } ;
11 struct __anonstruct__sigsys_319 { void *_call_addr; int _syscall; unsigned int _arch; } ;
11 union __anonunion__sifields_310 { int _pad[28U]; struct __anonstruct__kill_311 _kill; struct __anonstruct__timer_312 _timer; struct __anonstruct__rt_313 _rt; struct __anonstruct__sigchld_314 _sigchld; struct __anonstruct__sigfault_315 _sigfault; struct __anonstruct__sigpoll_318 _sigpoll; struct __anonstruct__sigsys_319 _sigsys; } ;
11 struct siginfo { int si_signo; int si_errno; int si_code; union __anonunion__sifields_310 _sifields; } ;
118 typedef struct siginfo siginfo_t;
22 struct sigpending { struct list_head list; sigset_t signal; } ;
257 struct sigaction { __sighandler_t sa_handler; unsigned long sa_flags; __sigrestore_t sa_restorer; sigset_t sa_mask; } ;
271 struct k_sigaction { struct sigaction sa; } ;
43 struct seccomp_filter ;
44 struct seccomp { int mode; struct seccomp_filter *filter; } ;
40 struct rt_mutex_waiter ;
41 struct rlimit { __kernel_ulong_t rlim_cur; __kernel_ulong_t rlim_max; } ;
11 struct timerqueue_node { struct rb_node node; ktime_t expires; } ;
12 struct timerqueue_head { struct rb_root head; struct timerqueue_node *next; } ;
50 struct hrtimer_clock_base ;
51 struct hrtimer_cpu_base ;
60 enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ;
65 struct hrtimer { struct timerqueue_node node; ktime_t _softexpires; enum hrtimer_restart (*function)(struct hrtimer *); struct hrtimer_clock_base *base; u8 state; u8 is_rel; int start_pid; void *start_site; char start_comm[16U]; } ;
125 struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base; int index; clockid_t clockid; struct timerqueue_head active; ktime_t (*get_time)(); ktime_t offset; } ;
158 struct hrtimer_cpu_base { raw_spinlock_t lock; seqcount_t seq; struct hrtimer *running; unsigned int cpu; unsigned int active_bases; unsigned int clock_was_set_seq; bool migration_enabled; bool nohz_active; unsigned char in_hrtirq; unsigned char hres_active; unsigned char hang_detected; ktime_t expires_next; struct hrtimer *next_timer; unsigned int nr_events; unsigned int nr_retries; unsigned int nr_hangs; unsigned int max_hang_time; struct hrtimer_clock_base clock_base[4U]; } ;
12 enum kcov_mode { KCOV_MODE_DISABLED = 0, KCOV_MODE_TRACE = 1 } ;
17 struct task_io_accounting { u64 rchar; u64 wchar; u64 syscr; u64 syscw; u64 read_bytes; u64 write_bytes; u64 cancelled_write_bytes; } ;
45 struct latency_record { unsigned long backtrace[12U]; unsigned int count; unsigned long time; unsigned long max; } ;
41 struct percpu_ref ;
55 typedef void percpu_ref_func_t(struct percpu_ref *);
68 struct percpu_ref { atomic_long_t count; unsigned long percpu_count_ptr; percpu_ref_func_t *release; percpu_ref_func_t *confirm_switch; bool force_atomic; struct callback_head rcu; } ;
325 struct cgroup ;
326 struct cgroup_root ;
327 struct cgroup_subsys ;
328 struct cgroup_taskset ;
372 struct cgroup_file { struct kernfs_node *kn; } ;
90 struct cgroup_subsys_state { struct cgroup *cgroup; struct cgroup_subsys *ss; struct percpu_ref refcnt; struct cgroup_subsys_state *parent; struct list_head sibling; struct list_head children; int id; unsigned int flags; u64 serial_nr; atomic_t online_cnt; struct callback_head callback_head; struct work_struct destroy_work; } ;
141 struct css_set { atomic_t refcount; struct hlist_node hlist; struct list_head tasks; struct list_head mg_tasks; struct list_head cgrp_links; struct cgroup *dfl_cgrp; struct cgroup_subsys_state *subsys[13U]; struct list_head mg_preload_node; struct list_head mg_node; struct cgroup *mg_src_cgrp; struct cgroup *mg_dst_cgrp; struct css_set *mg_dst_cset; struct list_head e_cset_node[13U]; struct list_head task_iters; bool dead; struct callback_head callback_head; } ;
221 struct cgroup { struct cgroup_subsys_state self; unsigned long flags; int id; int level; int populated_cnt; struct kernfs_node *kn; struct cgroup_file procs_file; struct cgroup_file events_file; u16 subtree_control; u16 subtree_ss_mask; u16 old_subtree_control; u16 old_subtree_ss_mask; struct cgroup_subsys_state *subsys[13U]; struct cgroup_root *root; struct list_head cset_links; struct list_head e_csets[13U]; struct list_head pidlists; struct mutex pidlist_mutex; wait_queue_head_t offline_waitq; struct work_struct release_agent_work; int ancestor_ids[]; } ;
306 struct cgroup_root { struct kernfs_root *kf_root; unsigned int subsys_mask; int hierarchy_id; struct cgroup cgrp; int cgrp_ancestor_id_storage; atomic_t nr_cgrps; struct list_head root_list; unsigned int flags; struct idr cgroup_idr; char release_agent_path[4096U]; char name[64U]; } ;
345 struct cftype { char name[64U]; unsigned long private; size_t max_write_len; unsigned int flags; unsigned int file_offset; struct cgroup_subsys *ss; struct list_head node; struct kernfs_ops *kf_ops; u64 (*read_u64)(struct cgroup_subsys_state *, struct cftype *); s64 (*read_s64)(struct cgroup_subsys_state *, struct cftype *); int (*seq_show)(struct seq_file *, void *); void * (*seq_start)(struct seq_file *, loff_t *); void * (*seq_next)(struct seq_file *, void *, loff_t *); void (*seq_stop)(struct seq_file *, void *); int (*write_u64)(struct cgroup_subsys_state *, struct cftype *, u64 ); int (*write_s64)(struct cgroup_subsys_state *, struct cftype *, s64 ); ssize_t (*write)(struct kernfs_open_file *, char *, size_t , loff_t ); struct lock_class_key lockdep_key; } ;
430 struct cgroup_subsys { struct cgroup_subsys_state * (*css_alloc)(struct cgroup_subsys_state *); int (*css_online)(struct cgroup_subsys_state *); void (*css_offline)(struct cgroup_subsys_state *); void (*css_released)(struct cgroup_subsys_state *); void (*css_free)(struct cgroup_subsys_state *); void (*css_reset)(struct cgroup_subsys_state *); int (*can_attach)(struct cgroup_taskset *); void (*cancel_attach)(struct cgroup_taskset *); void (*attach)(struct cgroup_taskset *); void (*post_attach)(); int (*can_fork)(struct task_struct *); void (*cancel_fork)(struct task_struct *); void (*fork)(struct task_struct *); void (*exit)(struct task_struct *); void (*free)(struct task_struct *); void (*bind)(struct cgroup_subsys_state *); bool early_init; bool implicit_on_dfl; bool broken_hierarchy; bool warned_broken_hierarchy; int id; const char *name; const char *legacy_name; struct cgroup_root *root; struct idr css_idr; struct list_head cfts; struct cftype *dfl_cftypes; struct cftype *legacy_cftypes; unsigned int depends_on; } ;
128 struct futex_pi_state ;
129 struct robust_list_head ;
130 struct bio_list ;
131 struct fs_struct ;
132 struct perf_event_context ;
133 struct blk_plug ;
134 struct nameidata ;
188 struct cfs_rq ;
189 struct task_group ;
493 struct sighand_struct { atomic_t count; struct k_sigaction action[64U]; spinlock_t siglock; wait_queue_head_t signalfd_wqh; } ;
536 struct pacct_struct { int ac_flag; long ac_exitcode; unsigned long ac_mem; cputime_t ac_utime; cputime_t ac_stime; unsigned long ac_minflt; unsigned long ac_majflt; } ;
544 struct cpu_itimer { cputime_t expires; cputime_t incr; u32 error; u32 incr_error; } ;
551 struct prev_cputime { cputime_t utime; cputime_t stime; raw_spinlock_t lock; } ;
576 struct task_cputime { cputime_t utime; cputime_t stime; unsigned long long sum_exec_runtime; } ;
592 struct task_cputime_atomic { atomic64_t utime; atomic64_t stime; atomic64_t sum_exec_runtime; } ;
614 struct thread_group_cputimer { struct task_cputime_atomic cputime_atomic; bool running; bool checking_timer; } ;
659 struct autogroup ;
660 struct tty_struct ;
660 struct taskstats ;
660 struct tty_audit_buf ;
660 struct signal_struct { atomic_t sigcnt; atomic_t live; int nr_threads; atomic_t oom_victims; struct list_head thread_head; wait_queue_head_t wait_chldexit; struct task_struct *curr_target; struct sigpending shared_pending; int group_exit_code; int notify_count; struct task_struct *group_exit_task; int group_stop_count; unsigned int flags; unsigned char is_child_subreaper; unsigned char has_child_subreaper; int posix_timer_id; struct list_head posix_timers; struct hrtimer real_timer; struct pid *leader_pid; ktime_t it_real_incr; struct cpu_itimer it[2U]; struct thread_group_cputimer cputimer; struct task_cputime cputime_expires; struct list_head cpu_timers[3U]; struct pid *tty_old_pgrp; int leader; struct tty_struct *tty; struct autogroup *autogroup; seqlock_t stats_lock; cputime_t utime; cputime_t stime; cputime_t cutime; cputime_t cstime; cputime_t gtime; cputime_t cgtime; struct prev_cputime prev_cputime; unsigned long nvcsw; unsigned long nivcsw; unsigned long cnvcsw; unsigned long cnivcsw; unsigned long min_flt; unsigned long maj_flt; unsigned long cmin_flt; unsigned long cmaj_flt; unsigned long inblock; unsigned long oublock; unsigned long cinblock; unsigned long coublock; unsigned long maxrss; unsigned long cmaxrss; struct task_io_accounting ioac; unsigned long long sum_sched_runtime; struct rlimit rlim[16U]; struct pacct_struct pacct; struct taskstats *stats; unsigned int audit_tty; struct tty_audit_buf *tty_audit_buf; bool oom_flag_origin; short oom_score_adj; short oom_score_adj_min; struct mutex cred_guard_mutex; } ;
835 struct user_struct { atomic_t __count; atomic_t processes; atomic_t sigpending; atomic_t inotify_watches; atomic_t inotify_devs; atomic_t fanotify_listeners; atomic_long_t epoll_watches; unsigned long mq_bytes; unsigned long locked_shm; unsigned long unix_inflight; atomic_long_t pipe_bufs; struct key *uid_keyring; struct key *session_keyring; struct hlist_node uidhash_node; kuid_t uid; atomic_long_t locked_vm; } ;
880 struct reclaim_state ;
881 struct sched_info { unsigned long pcount; unsigned long long run_delay; unsigned long long last_arrival; unsigned long long last_queued; } ;
896 struct task_delay_info { spinlock_t lock; unsigned int flags; u64 blkio_start; u64 blkio_delay; u64 swapin_delay; u32 blkio_count; u32 swapin_count; u64 freepages_start; u64 freepages_delay; u32 freepages_count; } ;
953 struct wake_q_node { struct wake_q_node *next; } ;
1220 struct load_weight { unsigned long weight; u32 inv_weight; } ;
1228 struct sched_avg { u64 last_update_time; u64 load_sum; u32 util_sum; u32 period_contrib; unsigned long load_avg; unsigned long util_avg; } ;
1286 struct sched_statistics { u64 wait_start; u64 wait_max; u64 wait_count; u64 wait_sum; u64 iowait_count; u64 iowait_sum; u64 sleep_start; u64 sleep_max; s64 sum_sleep_runtime; u64 block_start; u64 block_max; u64 exec_max; u64 slice_max; u64 nr_migrations_cold; u64 nr_failed_migrations_affine; u64 nr_failed_migrations_running; u64 nr_failed_migrations_hot; u64 nr_forced_migrations; u64 nr_wakeups; u64 nr_wakeups_sync; u64 nr_wakeups_migrate; u64 nr_wakeups_local; u64 nr_wakeups_remote; u64 nr_wakeups_affine; u64 nr_wakeups_affine_attempts; u64 nr_wakeups_passive; u64 nr_wakeups_idle; } ;
1321 struct sched_entity { struct load_weight load; struct rb_node run_node; struct list_head group_node; unsigned int on_rq; u64 exec_start; u64 sum_exec_runtime; u64 vruntime; u64 prev_sum_exec_runtime; u64 nr_migrations; struct sched_statistics statistics; int depth; struct sched_entity *parent; struct cfs_rq *cfs_rq; struct cfs_rq *my_q; struct sched_avg avg; } ;
1358 struct rt_rq ;
1358 struct sched_rt_entity { struct list_head run_list; unsigned long timeout; unsigned long watchdog_stamp; unsigned int time_slice; unsigned short on_rq; unsigned short on_list; struct sched_rt_entity *back; struct sched_rt_entity *parent; struct rt_rq *rt_rq; struct rt_rq *my_q; } ;
1376 struct sched_dl_entity { struct rb_node rb_node; u64 dl_runtime; u64 dl_deadline; u64 dl_period; u64 dl_bw; s64 runtime; u64 deadline; unsigned int flags; int dl_throttled; int dl_boosted; int dl_yielded; struct hrtimer dl_timer; } ;
1440 struct tlbflush_unmap_batch { struct cpumask cpumask; bool flush_required; bool writable; } ;
1459 struct sched_class ;
1459 struct compat_robust_list_head ;
1459 struct numa_group ;
1459 struct kcov ;
1459 struct task_struct { volatile long state; void *stack; atomic_t usage; unsigned int flags; unsigned int ptrace; struct llist_node wake_entry; int on_cpu; unsigned int wakee_flips; unsigned long wakee_flip_decay_ts; struct task_struct *last_wakee; int wake_cpu; int on_rq; int prio; int static_prio; int normal_prio; unsigned int rt_priority; const struct sched_class *sched_class; struct sched_entity se; struct sched_rt_entity rt; struct task_group *sched_task_group; struct sched_dl_entity dl; struct hlist_head preempt_notifiers; unsigned int policy; int nr_cpus_allowed; cpumask_t cpus_allowed; unsigned long rcu_tasks_nvcsw; bool rcu_tasks_holdout; struct list_head rcu_tasks_holdout_list; int rcu_tasks_idle_cpu; struct sched_info sched_info; struct list_head tasks; struct plist_node pushable_tasks; struct rb_node pushable_dl_tasks; struct mm_struct *mm; struct mm_struct *active_mm; u32 vmacache_seqnum; struct vm_area_struct *vmacache[4U]; struct task_rss_stat rss_stat; int exit_state; int exit_code; int exit_signal; int pdeath_signal; unsigned long jobctl; unsigned int personality; unsigned char sched_reset_on_fork; unsigned char sched_contributes_to_load; unsigned char sched_migrated; unsigned char sched_remote_wakeup; unsigned char; unsigned char in_execve; unsigned char in_iowait; unsigned char restore_sigmask; unsigned char memcg_may_oom; unsigned char memcg_kmem_skip_account; unsigned char brk_randomized; unsigned long atomic_flags; struct restart_block restart_block; pid_t pid; pid_t tgid; struct task_struct *real_parent; struct task_struct *parent; struct list_head children; struct list_head sibling; struct task_struct *group_leader; struct list_head ptraced; struct list_head ptrace_entry; struct pid_link pids[3U]; struct list_head thread_group; struct list_head thread_node; struct completion *vfork_done; int *set_child_tid; int *clear_child_tid; cputime_t utime; cputime_t stime; cputime_t utimescaled; cputime_t stimescaled; cputime_t gtime; struct prev_cputime prev_cputime; unsigned long nvcsw; unsigned long nivcsw; u64 start_time; u64 real_start_time; unsigned long min_flt; unsigned long maj_flt; struct task_cputime cputime_expires; struct list_head cpu_timers[3U]; const struct cred *real_cred; const struct cred *cred; char comm[16U]; struct nameidata *nameidata; struct sysv_sem sysvsem; struct sysv_shm sysvshm; unsigned long last_switch_count; struct fs_struct *fs; struct files_struct *files; struct nsproxy *nsproxy; struct signal_struct *signal; struct sighand_struct *sighand; sigset_t blocked; sigset_t real_blocked; sigset_t saved_sigmask; struct sigpending pending; unsigned long sas_ss_sp; size_t sas_ss_size; unsigned int sas_ss_flags; struct callback_head *task_works; struct audit_context *audit_context; kuid_t loginuid; unsigned int sessionid; struct seccomp seccomp; u32 parent_exec_id; u32 self_exec_id; spinlock_t alloc_lock; raw_spinlock_t pi_lock; struct wake_q_node wake_q; struct rb_root pi_waiters; struct rb_node *pi_waiters_leftmost; struct rt_mutex_waiter *pi_blocked_on; struct mutex_waiter *blocked_on; unsigned int irq_events; unsigned long hardirq_enable_ip; unsigned long hardirq_disable_ip; unsigned int hardirq_enable_event; unsigned int hardirq_disable_event; int hardirqs_enabled; int hardirq_context; unsigned long softirq_disable_ip; unsigned long softirq_enable_ip; unsigned int softirq_disable_event; unsigned int softirq_enable_event; int softirqs_enabled; int softirq_context; u64 curr_chain_key; int lockdep_depth; unsigned int lockdep_recursion; struct held_lock held_locks[48U]; gfp_t lockdep_reclaim_gfp; unsigned int in_ubsan; void *journal_info; struct bio_list *bio_list; struct blk_plug *plug; struct reclaim_state *reclaim_state; struct backing_dev_info *backing_dev_info; struct io_context *io_context; unsigned long ptrace_message; siginfo_t *last_siginfo; struct task_io_accounting ioac; u64 acct_rss_mem1; u64 acct_vm_mem1; cputime_t acct_timexpd; nodemask_t mems_allowed; seqcount_t mems_allowed_seq; int cpuset_mem_spread_rotor; int cpuset_slab_spread_rotor; struct css_set *cgroups; struct list_head cg_list; struct robust_list_head *robust_list; struct compat_robust_list_head *compat_robust_list; struct list_head pi_state_list; struct futex_pi_state *pi_state_cache; struct perf_event_context *perf_event_ctxp[2U]; struct mutex perf_event_mutex; struct list_head perf_event_list; struct mempolicy *mempolicy; short il_next; short pref_node_fork; int numa_scan_seq; unsigned int numa_scan_period; unsigned int numa_scan_period_max; int numa_preferred_nid; unsigned long numa_migrate_retry; u64 node_stamp; u64 last_task_numa_placement; u64 last_sum_exec_runtime; struct callback_head numa_work; struct list_head numa_entry; struct numa_group *numa_group; unsigned long *numa_faults; unsigned long total_numa_faults; unsigned long numa_faults_locality[3U]; unsigned long numa_pages_migrated; struct tlbflush_unmap_batch tlb_ubc; struct callback_head rcu; struct pipe_inode_info *splice_pipe; struct page_frag task_frag; struct task_delay_info *delays; int make_it_fail; int nr_dirtied; int nr_dirtied_pause; unsigned long dirty_paused_when; int latency_record_count; struct latency_record latency_record[32U]; u64 timer_slack_ns; u64 default_timer_slack_ns; unsigned int kasan_depth; unsigned long trace; unsigned long trace_recursion; enum kcov_mode kcov_mode; unsigned int kcov_size; void *kcov_area; struct kcov *kcov; struct mem_cgroup *memcg_in_oom; gfp_t memcg_oom_gfp_mask; int memcg_oom_order; unsigned int memcg_nr_pages_over_high; struct uprobe_task *utask; unsigned int sequential_io; unsigned int sequential_io_avg; unsigned long task_state_change; int pagefault_disabled; struct task_struct *oom_reaper_list; struct thread_struct thread; } ;
76 struct dma_map_ops ;
76 struct dev_archdata { struct dma_map_ops *dma_ops; void *iommu; } ;
24 struct device_private ;
25 struct device_driver ;
26 struct driver_private ;
27 struct class ;
28 struct subsys_private ;
29 struct bus_type ;
30 struct device_node ;
31 struct fwnode_handle ;
32 struct iommu_ops ;
33 struct iommu_group ;
61 struct device_attribute ;
61 struct bus_type { const char *name; const char *dev_name; struct device *dev_root; struct device_attribute *dev_attrs; const struct attribute_group **bus_groups; const struct attribute_group **dev_groups; const struct attribute_group **drv_groups; int (*match)(struct device *, struct device_driver *); int (*uevent)(struct device *, struct kobj_uevent_env *); int (*probe)(struct device *); int (*remove)(struct device *); void (*shutdown)(struct device *); int (*online)(struct device *); int (*offline)(struct device *); int (*suspend)(struct device *, pm_message_t ); int (*resume)(struct device *); const struct dev_pm_ops *pm; const struct iommu_ops *iommu_ops; struct subsys_private *p; struct lock_class_key lock_key; } ;
142 struct device_type ;
201 enum probe_type { PROBE_DEFAULT_STRATEGY = 0, PROBE_PREFER_ASYNCHRONOUS = 1, PROBE_FORCE_SYNCHRONOUS = 2 } ;
207 struct of_device_id ;
207 struct acpi_device_id ;
207 struct device_driver { const char *name; struct bus_type *bus; struct module *owner; const char *mod_name; bool suppress_bind_attrs; enum probe_type probe_type; const struct of_device_id *of_match_table; const struct acpi_device_id *acpi_match_table; int (*probe)(struct device *); int (*remove)(struct device *); void (*shutdown)(struct device *); int (*suspend)(struct device *, pm_message_t ); int (*resume)(struct device *); const struct attribute_group **groups; const struct dev_pm_ops *pm; struct driver_private *p; } ;
357 struct class_attribute ;
357 struct class { const char *name; struct module *owner; struct class_attribute *class_attrs; const struct attribute_group **dev_groups; struct kobject *dev_kobj; int (*dev_uevent)(struct device *, struct kobj_uevent_env *); char * (*devnode)(struct device *, umode_t *); void (*class_release)(struct class *); void (*dev_release)(struct device *); int (*suspend)(struct device *, pm_message_t ); int (*resume)(struct device *); const struct kobj_ns_type_operations *ns_type; const void * (*namespace)(struct device *); const struct dev_pm_ops *pm; struct subsys_private *p; } ;
450 struct class_attribute { struct attribute attr; ssize_t (*show)(struct class *, struct class_attribute *, char *); ssize_t (*store)(struct class *, struct class_attribute *, const char *, size_t ); } ;
518 struct device_type { const char *name; const struct attribute_group **groups; int (*uevent)(struct device *, struct kobj_uevent_env *); char * (*devnode)(struct device *, umode_t *, kuid_t *, kgid_t *); void (*release)(struct device *); const struct dev_pm_ops *pm; } ;
546 struct device_attribute { struct attribute attr; ssize_t (*show)(struct device *, struct device_attribute *, char *); ssize_t (*store)(struct device *, struct device_attribute *, const char *, size_t ); } ;
699 struct device_dma_parameters { unsigned int max_segment_size; unsigned long segment_boundary_mask; } ;
708 struct irq_domain ;
708 struct dma_coherent_mem ;
708 struct cma ;
708 struct device { struct device *parent; struct device_private *p; struct kobject kobj; const char *init_name; const struct device_type *type; struct mutex mutex; struct bus_type *bus; struct device_driver *driver; void *platform_data; void *driver_data; struct dev_pm_info power; struct dev_pm_domain *pm_domain; struct irq_domain *msi_domain; struct dev_pin_info *pins; struct list_head msi_list; int numa_node; u64 *dma_mask; u64 coherent_dma_mask; unsigned long dma_pfn_offset; struct device_dma_parameters *dma_parms; struct list_head dma_pools; struct dma_coherent_mem *dma_mem; struct cma *cma_area; struct dev_archdata archdata; struct device_node *of_node; struct fwnode_handle *fwnode; dev_t devt; u32 id; spinlock_t devres_lock; struct list_head devres_head; struct klist_node knode_class; struct class *class; const struct attribute_group **groups; void (*release)(struct device *); struct iommu_group *iommu_group; bool offline_disabled; bool offline; } ;
862 struct wakeup_source { const char *name; struct list_head entry; spinlock_t lock; struct wake_irq *wakeirq; struct timer_list timer; unsigned long timer_expires; ktime_t total_time; ktime_t max_time; ktime_t last_time; ktime_t start_prevent_time; ktime_t prevent_sleep_time; unsigned long event_count; unsigned long active_count; unsigned long relax_count; unsigned long expire_count; unsigned long wakeup_count; bool active; bool autosleep_enabled; } ;
1327 enum irqreturn { IRQ_NONE = 0, IRQ_HANDLED = 1, IRQ_WAKE_THREAD = 2 } ;
16 typedef enum irqreturn irqreturn_t;
423 struct proc_dir_entry ;
63 struct exception_table_entry { int insn; int fixup; int handler; } ;
708 struct miscdevice { int minor; const char *name; const struct file_operations *fops; struct list_head list; struct device *parent; struct device *this_device; const struct attribute_group **groups; const char *nodename; umode_t mode; } ;
19 struct vdso_image { void *data; unsigned long size; unsigned long alt; unsigned long alt_len; long sym_vvar_start; long sym_vvar_page; long sym_hpet_page; long sym_pvclock_page; long sym_VDSO32_NOTE_MASK; long sym___kernel_sigreturn; long sym___kernel_rt_sigreturn; long sym___kernel_vsyscall; long sym_int80_landing_pad; } ;
15 typedef __u64 Elf64_Addr;
16 typedef __u16 Elf64_Half;
18 typedef __u64 Elf64_Off;
20 typedef __u32 Elf64_Word;
21 typedef __u64 Elf64_Xword;
190 struct elf64_sym { Elf64_Word st_name; unsigned char st_info; unsigned char st_other; Elf64_Half st_shndx; Elf64_Addr st_value; Elf64_Xword st_size; } ;
198 typedef struct elf64_sym Elf64_Sym;
219 struct elf64_hdr { unsigned char e_ident[16U]; Elf64_Half e_type; Elf64_Half e_machine; Elf64_Word e_version; Elf64_Addr e_entry; Elf64_Off e_phoff; Elf64_Off e_shoff; Elf64_Word e_flags; Elf64_Half e_ehsize; Elf64_Half e_phentsize; Elf64_Half e_phnum; Elf64_Half e_shentsize; Elf64_Half e_shnum; Elf64_Half e_shstrndx; } ;
235 typedef struct elf64_hdr Elf64_Ehdr;
314 struct elf64_shdr { Elf64_Word sh_name; Elf64_Word sh_type; Elf64_Xword sh_flags; Elf64_Addr sh_addr; Elf64_Off sh_offset; Elf64_Xword sh_size; Elf64_Word sh_link; Elf64_Word sh_info; Elf64_Xword sh_addralign; Elf64_Xword sh_entsize; } ;
326 typedef struct elf64_shdr Elf64_Shdr;
53 struct kernel_param ;
58 struct kernel_param_ops { unsigned int flags; int (*set)(const char *, const struct kernel_param *); int (*get)(char *, const struct kernel_param *); void (*free)(void *); } ;
62 struct kparam_string ;
62 struct kparam_array ;
62 union __anonunion____missing_field_name_357 { void *arg; const struct kparam_string *str; const struct kparam_array *arr; } ;
62 struct kernel_param { const char *name; struct module *mod; const struct kernel_param_ops *ops; const u16 perm; s8 level; u8 flags; union __anonunion____missing_field_name_357 __annonCompField81; } ;
83 struct kparam_string { unsigned int maxlen; char *string; } ;
89 struct kparam_array { unsigned int max; unsigned int elemsize; unsigned int *num; const struct kernel_param_ops *ops; void *elem; } ;
24 struct latch_tree_node { struct rb_node node[2U]; } ;
211 struct mod_arch_specific { } ;
39 struct module_param_attrs ;
39 struct module_kobject { struct kobject kobj; struct module *mod; struct kobject *drivers_dir; struct module_param_attrs *mp; struct completion *kobj_completion; } ;
50 struct module_attribute { struct attribute attr; ssize_t (*show)(struct module_attribute *, struct module_kobject *, char *); ssize_t (*store)(struct module_attribute *, struct module_kobject *, const char *, size_t ); void (*setup)(struct module *, const char *); int (*test)(struct module *); void (*free)(struct module *); } ;
277 enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ;
284 struct mod_tree_node { struct module *mod; struct latch_tree_node node; } ;
291 struct module_layout { void *base; unsigned int size; unsigned int text_size; unsigned int ro_size; unsigned int ro_after_init_size; struct mod_tree_node mtn; } ;
307 struct mod_kallsyms { Elf64_Sym *symtab; unsigned int num_symtab; char *strtab; } ;
321 struct klp_modinfo { Elf64_Ehdr hdr; Elf64_Shdr *sechdrs; char *secstrings; unsigned int symndx; } ;
329 struct module_sect_attrs ;
329 struct module_notes_attrs ;
329 struct trace_event_call ;
329 struct trace_enum_map ;
329 struct module { enum module_state state; struct list_head list; char name[56U]; struct module_kobject mkobj; struct module_attribute *modinfo_attrs; const char *version; const char *srcversion; struct kobject *holders_dir; const struct kernel_symbol *syms; const unsigned long *crcs; unsigned int num_syms; struct mutex param_lock; struct kernel_param *kp; unsigned int num_kp; unsigned int num_gpl_syms; const struct kernel_symbol *gpl_syms; const unsigned long *gpl_crcs; const struct kernel_symbol *unused_syms; const unsigned long *unused_crcs; unsigned int num_unused_syms; unsigned int num_unused_gpl_syms; const struct kernel_symbol *unused_gpl_syms; const unsigned long *unused_gpl_crcs; bool sig_ok; bool async_probe_requested; const struct kernel_symbol *gpl_future_syms; const unsigned long *gpl_future_crcs; unsigned int num_gpl_future_syms; unsigned int num_exentries; struct exception_table_entry *extable; int (*init)(); struct module_layout core_layout; struct module_layout init_layout; struct mod_arch_specific arch; unsigned int taints; unsigned int num_bugs; struct list_head bug_list; struct bug_entry *bug_table; struct mod_kallsyms *kallsyms; struct mod_kallsyms core_kallsyms; struct module_sect_attrs *sect_attrs; struct module_notes_attrs *notes_attrs; char *args; void *percpu; unsigned int percpu_size; unsigned int num_tracepoints; const struct tracepoint **tracepoints_ptrs; unsigned int num_trace_bprintk_fmt; const char **trace_bprintk_fmt_start; struct trace_event_call **trace_events; unsigned int num_trace_events; struct trace_enum_map **trace_enums; unsigned int num_trace_enums; bool klp; bool klp_alive; struct klp_modinfo *klp_info; struct list_head source_list; struct list_head target_list; void (*exit)(); atomic_t refcnt; ctor_fn_t (**ctors)(); unsigned int num_ctors; } ;
13 typedef unsigned long kernel_ulong_t;
14 struct pci_device_id { __u32 vendor; __u32 device; __u32 subvendor; __u32 subdevice; __u32 class; __u32 class_mask; kernel_ulong_t driver_data; } ;
186 struct acpi_device_id { __u8 id[9U]; kernel_ulong_t driver_data; __u32 cls; __u32 cls_msk; } ;
229 struct of_device_id { char name[32U]; char type[32U]; char compatible[128U]; const void *data; } ;
70 struct hotplug_slot ;
70 struct pci_slot { struct pci_bus *bus; struct list_head list; struct hotplug_slot *hotplug; unsigned char number; struct kobject kobj; } ;
108 typedef int pci_power_t;
135 typedef unsigned int pci_channel_state_t;
136 enum pci_channel_state { pci_channel_io_normal = 1, pci_channel_io_frozen = 2, pci_channel_io_perm_failure = 3 } ;
161 typedef unsigned short pci_dev_flags_t;
188 typedef unsigned short pci_bus_flags_t;
245 struct pcie_link_state ;
246 struct pci_vpd ;
247 struct pci_sriov ;
249 struct pci_driver ;
249 union __anonunion____missing_field_name_375 { struct pci_sriov *sriov; struct pci_dev *physfn; } ;
249 struct pci_dev { struct list_head bus_list; struct pci_bus *bus; struct pci_bus *subordinate; void *sysdata; struct proc_dir_entry *procent; struct pci_slot *slot; unsigned int devfn; unsigned short vendor; unsigned short device; unsigned short subsystem_vendor; unsigned short subsystem_device; unsigned int class; u8 revision; u8 hdr_type; u8 pcie_cap; u8 msi_cap; u8 msix_cap; unsigned char pcie_mpss; u8 rom_base_reg; u8 pin; u16 pcie_flags_reg; unsigned long *dma_alias_mask; struct pci_driver *driver; u64 dma_mask; struct device_dma_parameters dma_parms; pci_power_t current_state; u8 pm_cap; unsigned char pme_support; unsigned char pme_interrupt; unsigned char pme_poll; unsigned char d1_support; unsigned char d2_support; unsigned char no_d1d2; unsigned char no_d3cold; unsigned char bridge_d3; unsigned char d3cold_allowed; unsigned char mmio_always_on; unsigned char wakeup_prepared; unsigned char runtime_d3cold; unsigned char ignore_hotplug; unsigned int d3_delay; unsigned int d3cold_delay; struct pcie_link_state *link_state; pci_channel_state_t error_state; struct device dev; int cfg_size; unsigned int irq; struct cpumask *irq_affinity; struct resource resource[17U]; bool match_driver; unsigned char transparent; unsigned char multifunction; unsigned char is_added; unsigned char is_busmaster; unsigned char no_msi; unsigned char no_64bit_msi; unsigned char block_cfg_access; unsigned char broken_parity_status; unsigned char irq_reroute_variant; unsigned char msi_enabled; unsigned char msix_enabled; unsigned char ari_enabled; unsigned char ats_enabled; unsigned char is_managed; unsigned char needs_freset; unsigned char state_saved; unsigned char is_physfn; unsigned char is_virtfn; unsigned char reset_fn; unsigned char is_hotplug_bridge; unsigned char __aer_firmware_first_valid; unsigned char __aer_firmware_first; unsigned char broken_intx_masking; unsigned char io_window_1k; unsigned char irq_managed; unsigned char has_secondary_link; unsigned char non_compliant_bars; pci_dev_flags_t dev_flags; atomic_t enable_cnt; u32 saved_config_space[16U]; struct hlist_head saved_cap_space; struct bin_attribute *rom_attr; int rom_attr_enabled; struct bin_attribute *res_attr[17U]; struct bin_attribute *res_attr_wc[17U]; const struct attribute_group **msi_irq_groups; struct pci_vpd *vpd; union __anonunion____missing_field_name_375 __annonCompField84; u16 ats_cap; u8 ats_stu; atomic_t ats_ref_cnt; phys_addr_t rom; size_t romlen; char *driver_override; } ;
452 struct pci_ops ;
452 struct msi_controller ;
452 struct pci_bus { struct list_head node; struct pci_bus *parent; struct list_head children; struct list_head devices; struct pci_dev *self; struct list_head slots; struct resource *resource[4U]; struct list_head resources; struct resource busn_res; struct pci_ops *ops; struct msi_controller *msi; void *sysdata; struct proc_dir_entry *procdir; unsigned char number; unsigned char primary; unsigned char max_bus_speed; unsigned char cur_bus_speed; char name[48U]; unsigned short bridge_ctl; pci_bus_flags_t bus_flags; struct device *bridge; struct device dev; struct bin_attribute *legacy_io; struct bin_attribute *legacy_mem; unsigned char is_added; } ;
576 struct pci_ops { int (*add_bus)(struct pci_bus *); void (*remove_bus)(struct pci_bus *); void * (*map_bus)(struct pci_bus *, unsigned int, int); int (*read)(struct pci_bus *, unsigned int, int, int, u32 *); int (*write)(struct pci_bus *, unsigned int, int, int, u32 ); } ;
606 struct pci_dynids { spinlock_t lock; struct list_head list; } ;
620 typedef unsigned int pci_ers_result_t;
630 struct pci_error_handlers { pci_ers_result_t (*error_detected)(struct pci_dev *, enum pci_channel_state ); pci_ers_result_t (*mmio_enabled)(struct pci_dev *); pci_ers_result_t (*link_reset)(struct pci_dev *); pci_ers_result_t (*slot_reset)(struct pci_dev *); void (*reset_notify)(struct pci_dev *, bool ); void (*resume)(struct pci_dev *); } ;
663 struct pci_driver { struct list_head node; const char *name; const struct pci_device_id *id_table; int (*probe)(struct pci_dev *, const struct pci_device_id *); void (*remove)(struct pci_dev *); int (*suspend)(struct pci_dev *, pm_message_t ); int (*suspend_late)(struct pci_dev *, pm_message_t ); int (*resume_early)(struct pci_dev *); int (*resume)(struct pci_dev *); void (*shutdown)(struct pci_dev *); int (*sriov_configure)(struct pci_dev *, int); const struct pci_error_handlers *err_handler; struct device_driver driver; struct pci_dynids dynids; } ;
273 struct vm_fault { unsigned int flags; gfp_t gfp_mask; unsigned long pgoff; void *virtual_address; struct page *cow_page; struct page *page; void *entry; } ;
308 struct fault_env { struct vm_area_struct *vma; unsigned long address; unsigned int flags; pmd_t *pmd; pte_t *pte; spinlock_t *ptl; pgtable_t prealloc_pte; } ;
335 struct vm_operations_struct { void (*open)(struct vm_area_struct *); void (*close)(struct vm_area_struct *); int (*mremap)(struct vm_area_struct *); int (*fault)(struct vm_area_struct *, struct vm_fault *); int (*pmd_fault)(struct vm_area_struct *, unsigned long, pmd_t *, unsigned int); void (*map_pages)(struct fault_env *, unsigned long, unsigned long); int (*page_mkwrite)(struct vm_area_struct *, struct vm_fault *); int (*pfn_mkwrite)(struct vm_area_struct *, struct vm_fault *); int (*access)(struct vm_area_struct *, unsigned long, void *, int, int); const char * (*name)(struct vm_area_struct *); int (*set_policy)(struct vm_area_struct *, struct mempolicy *); struct mempolicy * (*get_policy)(struct vm_area_struct *, unsigned long); struct page * (*find_special_page)(struct vm_area_struct *, unsigned long); } ;
2451 struct scatterlist { unsigned long sg_magic; unsigned long page_link; unsigned int offset; unsigned int length; dma_addr_t dma_address; unsigned int dma_length; } ;
21 struct sg_table { struct scatterlist *sgl; unsigned int nents; unsigned int orig_nents; } ;
89 enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3 } ;
158 struct dma_map_ops { void * (*alloc)(struct device *, size_t , dma_addr_t *, gfp_t , unsigned long); void (*free)(struct device *, size_t , void *, dma_addr_t , unsigned long); int (*mmap)(struct device *, struct vm_area_struct *, void *, dma_addr_t , size_t , unsigned long); int (*get_sgtable)(struct device *, struct sg_table *, void *, dma_addr_t , size_t , unsigned long); dma_addr_t (*map_page)(struct device *, struct page *, unsigned long, size_t , enum dma_data_direction , unsigned long); void (*unmap_page)(struct device *, dma_addr_t , size_t , enum dma_data_direction , unsigned long); int (*map_sg)(struct device *, struct scatterlist *, int, enum dma_data_direction , unsigned long); void (*unmap_sg)(struct device *, struct scatterlist *, int, enum dma_data_direction , unsigned long); void (*sync_single_for_cpu)(struct device *, dma_addr_t , size_t , enum dma_data_direction ); void (*sync_single_for_device)(struct device *, dma_addr_t , size_t , enum dma_data_direction ); void (*sync_sg_for_cpu)(struct device *, struct scatterlist *, int, enum dma_data_direction ); void (*sync_sg_for_device)(struct device *, struct scatterlist *, int, enum dma_data_direction ); int (*mapping_error)(struct device *, dma_addr_t ); int (*dma_supported)(struct device *, u64 ); int (*set_dma_mask)(struct device *, u64 ); int is_phys; } ;
134 struct pollfd { int fd; short events; short revents; } ;
32 struct poll_table_struct { void (*_qproc)(struct file *, wait_queue_head_t *, struct poll_table_struct *); unsigned long _key; } ;
40 typedef struct poll_table_struct poll_table;
103 struct nosy_stats { __u32 total_packet_count; __u32 lost_packet_count; } ;
52 struct __anonstruct_buffer_387 { __le32 control; __le32 pointer; } ;
52 struct pcl { __le32 next; __le32 async_error_next; u32 user_data; __le32 pcl_status; __le32 remaining_transfer_count; __le32 next_data_buffer; struct __anonstruct_buffer_387 buffer[13U]; } ;
66 struct packet { unsigned int length; char data[0U]; } ;
71 struct packet_buffer { char *data; size_t capacity; long total_packet_count; long lost_packet_count; atomic_t size; struct packet *head; struct packet *tail; wait_queue_head_t wait; } ;
80 struct pcilynx { struct pci_dev *pci_device; char *registers; struct pcl *rcv_start_pcl; struct pcl *rcv_pcl; __le32 *rcv_buffer; dma_addr_t rcv_start_pcl_bus; dma_addr_t rcv_pcl_bus; dma_addr_t rcv_buffer_bus; spinlock_t client_list_lock; struct list_head client_list; struct miscdevice misc; struct list_head link; struct kref kref; } ;
117 struct client { struct pcilynx *lynx; u32 tcode_mask; struct packet_buffer buffer; struct list_head link; } ;
1 void * __builtin_memcpy(void *, const void *, unsigned long);
1 unsigned long int __builtin_object_size(void *, int);
1 long int __builtin_expect(long exp, long c);
218 void __read_once_size(const volatile void *p, void *res, int size);
243 void __write_once_size(volatile void *p, void *res, int size);
31 void * __memcpy(void *, const void *, size_t );
58 unsigned int readl(const volatile void *addr);
66 void writel(unsigned int val, volatile void *addr);
184 void * ldv_ioremap_nocache_1(resource_size_t ldv_func_arg1, unsigned long ldv_func_arg2);
188 void * ldv_ioremap_nocache_3(resource_size_t ldv_func_arg1, unsigned long ldv_func_arg2);
208 void ldv_iounmap_2(volatile void *addr);
212 void ldv_iounmap_4(volatile void *addr);
33 extern struct module __this_module;
184 void __might_sleep(const char *, int, int);
254 void __might_fault(const char *, int);
71 void warn_slowpath_null(const char *, const int);
16 void __xadd_wrong_size();
24 int atomic_read(const atomic_t *v);
36 void atomic_set(atomic_t *v, int i);
48 void atomic_add(int i, atomic_t *v);
62 void atomic_sub(int i, atomic_t *v);
78 bool atomic_sub_and_test(int i, atomic_t *v);
154 int atomic_add_return(int i, atomic_t *v);
10 void ldv_error();
26 void * ldv_undef_ptr();
7 int LDV_IO_MEMS = 0;
11 void * ldv_io_mem_remap(void *addr);
23 void ldv_io_mem_unmap(const volatile void *addr);
29 void ldv_check_final_state();
25 void INIT_LIST_HEAD(struct list_head *list);
48 void __list_add(struct list_head *, struct list_head *, struct list_head *);
75 void list_add_tail(struct list_head *new, struct list_head *head);
112 void __list_del_entry(struct list_head *);
143 void list_del_init(struct list_head *entry);
187 int list_empty(const struct list_head *head);
138 void mutex_lock_nested(struct mutex *, unsigned int);
174 void mutex_unlock(struct mutex *);
93 void __raw_spin_lock_init(raw_spinlock_t *, const char *, struct lock_class_key *);
22 void _raw_spin_lock(raw_spinlock_t *);
31 void _raw_spin_lock_irq(raw_spinlock_t *);
41 void _raw_spin_unlock(raw_spinlock_t *);
43 void _raw_spin_unlock_irq(raw_spinlock_t *);
289 raw_spinlock_t * spinlock_check(spinlock_t *lock);
300 void spin_lock(spinlock_t *lock);
330 void spin_lock_irq(spinlock_t *lock);
345 void spin_unlock(spinlock_t *lock);
355 void spin_unlock_irq(spinlock_t *lock);
72 void __init_waitqueue_head(wait_queue_head_t *, const char *, struct lock_class_key *);
200 void __wake_up(wait_queue_head_t *, unsigned int, int, void *);
990 long int prepare_to_wait_event(wait_queue_head_t *, wait_queue_t *, int);
991 void finish_wait(wait_queue_head_t *, wait_queue_t *);
58 void getnstimeofday64(struct timespec *);
31 void kref_init(struct kref *kref);
40 void kref_get(struct kref *kref);
67 int kref_sub(struct kref *kref, unsigned int count, void (*release)(struct kref *));
96 int kref_put(struct kref *kref, void (*release)(struct kref *));
832 unsigned int iminor(const struct inode *inode);
2819 int nonseekable_open(struct inode *, struct file *);
441 void schedule();
912 void * dev_get_drvdata(const struct device *dev);
917 void dev_set_drvdata(struct device *dev, void *data);
1135 void dev_err(const struct device *, const char *, ...);
1141 void _dev_info(const struct device *, const char *, ...);
5 void kasan_check_read(const void *, unsigned int);
697 unsigned long int _copy_to_user(void *, const void *, unsigned int);
722 void __copy_to_user_overflow();
775 unsigned long int copy_to_user(void *to, const void *from, unsigned long n);
139 int request_threaded_irq(unsigned int, irqreturn_t (*)(int, void *), irqreturn_t (*)(int, void *), unsigned long, const char *, void *);
144 int request_irq(unsigned int irq, irqreturn_t (*handler)(int, void *), unsigned long flags, const char *name, void *dev);
158 void free_irq(unsigned int, void *);
70 int misc_register(struct miscdevice *);
71 void misc_deregister(struct miscdevice *);
154 void kfree(const void *);
318 void * __kmalloc(size_t , gfp_t );
466 void * kmalloc(size_t size, gfp_t flags);
622 void * kzalloc(size_t size, gfp_t flags);
994 int pci_enable_device(struct pci_dev *);
1011 void pci_disable_device(struct pci_dev *);
1014 void pci_set_master(struct pci_dev *);
1606 void * pci_get_drvdata(struct pci_dev *pdev);
1611 void pci_set_drvdata(struct pci_dev *pdev, void *data);
53 void debug_dma_alloc_coherent(struct device *, size_t , dma_addr_t , void *);
28 extern struct dma_map_ops *dma_ops;
30 struct dma_map_ops * get_dma_ops(struct device *dev);
42 bool arch_dma_alloc_attrs(struct device **, gfp_t *);
46 int dma_supported(struct device *, u64 );
404 void * dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag, unsigned long attrs);
445 void * dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag);
451 void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t dma_handle);
499 int dma_set_mask(struct device *dev, u64 mask);
16 void * pci_alloc_consistent(struct pci_dev *hwdev, size_t size, dma_addr_t *dma_handle);
31 void pci_free_consistent(struct pci_dev *hwdev, size_t size, void *vaddr, dma_addr_t dma_handle);
113 int pci_set_dma_mask(struct pci_dev *dev, u64 mask);
42 void poll_wait(struct file *filp, wait_queue_head_t *wait_address, poll_table *p);
51 char driver_name[5U] = { 'n', 'o', 's', 'y', '\x0' };
99 struct pcilynx * lynx_get(struct pcilynx *lynx);
107 void lynx_release(struct kref *kref);
113 void lynx_put(struct pcilynx *lynx);
125 struct mutex card_mutex = { { 1 }, { { { { { 0 } }, 3735899821U, 4294967295U, (void *)-1, { 0, { 0, 0 }, "card_mutex.wait_lock", 0, 0UL } } } }, { &(card_mutex.wait_list), &(card_mutex.wait_list) }, 0, (void *)(&card_mutex), { 0, { 0, 0 }, "card_mutex", 0, 0UL } };
126 struct list_head card_list = { &card_list, &card_list };
129 int packet_buffer_init(struct packet_buffer *buffer, size_t capacity);
145 void packet_buffer_destroy(struct packet_buffer *buffer);
151 int packet_buffer_get(struct client *client, char *data, size_t user_length);
195 void packet_buffer_put(struct packet_buffer *buffer, void *data, size_t length);
228 void reg_write(struct pcilynx *lynx, int offset, u32 data);
234 u32 reg_read(struct pcilynx *lynx, int offset);
240 void reg_set_bits(struct pcilynx *lynx, int offset, u32 mask);
250 void run_pcl(struct pcilynx *lynx, dma_addr_t pcl_bus, int dmachan);
259 int set_phy_reg(struct pcilynx *lynx, int addr, int val);
278 int nosy_open(struct inode *inode, struct file *file);
316 int nosy_release(struct inode *inode, struct file *file);
333 unsigned int nosy_poll(struct file *file, poll_table *pt);
350 ssize_t nosy_read(struct file *file, char *buffer, size_t count, loff_t *offset);
358 long int nosy_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
403 const struct file_operations nosy_ops = { &__this_module, 0, &nosy_read, 0, 0, 0, 0, 0, &nosy_poll, &nosy_ioctl, 0, 0, &nosy_open, 0, &nosy_release, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
415 void packet_irq_handler(struct pcilynx *lynx);
447 void bus_reset_irq_handler(struct pcilynx *lynx);
465 irqreturn_t irq_handler(int irq, void *device);
505 void remove_card(struct pci_dev *dev);
538 int add_card(struct pci_dev *dev, const struct pci_device_id *unused);
701 const struct pci_device_id __mod_pci__pci_table_device_table[2U] = { };
735 void ldv_check_return_value(int);
738 void ldv_check_return_value_probe(int);
741 void ldv_initialize();
744 void ldv_handler_precall();
747 int nondet_int();
750 int LDV_IN_INTERRUPT = 0;
753 void ldv_main0_sequence_infinite_withcheck_stateful();
return ;
}
-entry_point
{
755 struct file *var_group1;
756 char *var_nosy_read_15_p1;
757 unsigned long var_nosy_read_15_p2;
758 loff_t *var_nosy_read_15_p3;
759 long res_nosy_read_15;
760 unsigned int var_nosy_ioctl_16_p1;
761 unsigned long var_nosy_ioctl_16_p2;
762 poll_table *var_nosy_poll_14_p1;
763 struct inode *var_group2;
764 int res_nosy_open_12;
765 struct pci_dev *var_group3;
766 const struct pci_device_id *var_add_card_21_p1;
767 int res_add_card_21;
768 int var_irq_handler_19_p0;
769 void *var_irq_handler_19_p1;
770 int ldv_s_nosy_ops_file_operations;
771 int ldv_s_lynx_pci_driver_pci_driver;
772 int tmp;
773 int tmp___0;
895 ldv_s_nosy_ops_file_operations = 0;
898 ldv_s_lynx_pci_driver_pci_driver = 0;
885 LDV_IN_INTERRUPT = 1;
894 ldv_initialize() { /* Function call is skipped due to function is undefined */}
903 goto ldv_35019;
903 tmp___0 = nondet_int() { /* Function call is skipped due to function is undefined */}
903 assume(tmp___0 != 0);
907 goto ldv_35018;
904 ldv_35018:;
908 tmp = nondet_int() { /* Function call is skipped due to function is undefined */}
908 switch (tmp);
909 assume(!(tmp == 0));
939 assume(!(tmp == 1));
968 assume(!(tmp == 2));
994 assume(!(tmp == 3));
1020 assume(!(tmp == 4));
1046 assume(tmp == 5);
1049 assume(ldv_s_lynx_pci_driver_pci_driver == 0);
1059 -add_card(var_group3, var_add_card_21_p1)
{
540 struct pcilynx *lynx;
541 unsigned int p;
542 unsigned int end;
543 int ret;
544 int i;
545 int tmp;
546 int tmp___0;
547 void *tmp___1;
548 struct lock_class_key __key;
549 void *tmp___2;
550 void *tmp___3;
551 void *tmp___4;
552 void *tmp___5;
553 int tmp___6;
544 -pci_set_dma_mask(dev, 4294967295ULL)
{
115 int tmp;
115 -dma_set_mask(&(dev->dev), mask)
{
501 struct dma_map_ops *ops;
502 struct dma_map_ops *tmp;
503 int tmp___0;
504 int tmp___1;
501 -get_dma_ops(dev)
{
32 long tmp;
35 -__builtin_expect(((unsigned long)dev) == ((unsigned long)((struct device *)0)), 0L)
{
52 return exp;;
}
35 assume(!(tmp != 0L));
35 assume(!(((unsigned long)(dev->archdata.dma_ops)) == ((unsigned long)((struct dma_map_ops *)0))));
38 return dev->archdata.dma_ops;;
}
501 ops = tmp;
503 unsigned long __CPAchecker_TMP_0 = (unsigned long)(ops->set_dma_mask);
503 assume(__CPAchecker_TMP_0 != ((unsigned long)((int (*)(struct device *, u64 ))0)));
504 assume(!((ops->set_dma_mask) == (&nosy_open)));
504 assume(!((ops->set_dma_mask) == (&nosy_poll)));
504 assume(!((ops->set_dma_mask) == (&nosy_release)));
504 tmp___0 = (*(ops->set_dma_mask))(dev, mask);
504 return tmp___0;;
}
115 return tmp;;
}
544 assume(!(tmp != 0));
549 tmp___0 = pci_enable_device(dev) { /* Function call is skipped due to function is undefined */}
549 assume(!(tmp___0 != 0));
553 pci_set_master(dev) { /* Function call is skipped due to function is undefined */}
555 -kzalloc(256UL, 37748928U)
{
624 void *tmp;
624 -kmalloc(size, flags | 32768U)
{
468 void *tmp___2;
483 tmp___2 = __kmalloc(size, flags) { /* Function call is skipped due to function is undefined */}
483 return tmp___2;;
}
624 return tmp;;
}
555 lynx = (struct pcilynx *)tmp___1;
556 assume(!(((unsigned long)lynx) == ((unsigned long)((struct pcilynx *)0))));
561 lynx->pci_device = dev;
562 -pci_set_drvdata(dev, (void *)lynx)
{
1613 -dev_set_drvdata(&(pdev->dev), data)
{
919 dev->driver_data = data;
920 return ;;
}
1614 return ;;
}
564 -spinlock_check(&(lynx->client_list_lock))
{
291 return &(lock->__annonCompField29.rlock);;
}
564 __raw_spin_lock_init(&(lynx->client_list_lock.__annonCompField29.rlock), "&(&lynx->client_list_lock)->rlock", &__key) { /* Function call is skipped due to function is undefined */}
565 -INIT_LIST_HEAD(&(lynx->client_list))
{
27 union __anonunion___u_80 __u;
27 __u.__val = list;
27 -__write_once_size((volatile void *)(&(list->next)), (void *)(&(__u.__c)), 8)
{
245 switch (size);
246 assume(!(size == 1));
247 assume(!(size == 2));
248 assume(!(size == 4));
249 assume(size == 8);
249 *((volatile __u64 *)p) = *((__u64 *)res);
249 goto ldv_900;
256 return ;;
}
28 list->prev = list;
29 return ;;
}
566 -kref_init(&(lynx->kref))
{
33 -atomic_set(&(kref->refcount), 1)
{
38 union __anonunion___u_49 __u;
38 __u.__val = i;
38 -__write_once_size((volatile void *)(&(v->counter)), (void *)(&(__u.__c)), 4)
{
245 switch (size);
246 assume(!(size == 1));
247 assume(!(size == 2));
248 assume(size == 4);
248 *((volatile __u32 *)p) = *((__u32 *)res);
248 goto ldv_900;
256 return ;;
}
40 return ;;
}
34 return ;;
}
568 -ldv_ioremap_nocache_3(((dev->resource)[0]).start, 4095UL)
{
47 void *tmp;
48 -ldv_io_mem_remap((void *)ldv_func_arg1)
{
13 void *ptr;
14 void *tmp;
14 tmp = ldv_undef_ptr() { /* Function call is skipped due to function is undefined */}
14 ptr = tmp;
15 assume(!(((unsigned long)ptr) != ((unsigned long)((void *)0))));
19 return (void *)0;;
}
48 return tmp;;
}
568 lynx->registers = (char *)tmp___2;
571 -pci_alloc_consistent(lynx->pci_device, 128UL, &(lynx->rcv_start_pcl_bus))
{
18 void *tmp;
19 struct device *__CPAchecker_TMP_0;
19 assume(!(((unsigned long)hwdev) != ((unsigned long)((struct pci_dev *)0))));
19 __CPAchecker_TMP_0 = (struct device *)0;
19 -dma_alloc_coherent(__CPAchecker_TMP_0, size, dma_handle, 34078752U)
{
448 void *tmp;
448 -dma_alloc_attrs(dev, size, dma_handle, flag, 0UL)
{
407 struct dma_map_ops *ops;
408 struct dma_map_ops *tmp;
409 void *cpu_addr;
410 long tmp___0;
411 _Bool tmp___1;
412 int tmp___2;
408 -get_dma_ops(dev)
{
32 long tmp;
35 -__builtin_expect(((unsigned long)dev) == ((unsigned long)((struct device *)0)), 0L)
{
52 return exp;;
}
35 assume(tmp != 0L);
36 return dma_ops;;
}
408 ops = tmp;
411 -__builtin_expect(((unsigned long)ops) == ((unsigned long)((struct dma_map_ops *)0)), 0L)
{
52 return exp;;
}
411 assume(!(tmp___0 != 0L));
416 tmp___1 = arch_dma_alloc_attrs(&dev, &flag) { /* Function call is skipped due to function is undefined */}
416 assume(!(tmp___1 == 0));
416 tmp___2 = 0;
416 assume(tmp___2 == 0);
418 unsigned long __CPAchecker_TMP_0 = (unsigned long)(ops->alloc);
418 assume(!(__CPAchecker_TMP_0 == ((unsigned long)((void * (*)(struct device *, size_t , dma_addr_t *, gfp_t , unsigned long))0))));
421 cpu_addr = (*(ops->alloc))(dev, size, dma_handle, flag, attrs);
422 debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr) { /* Function call is skipped due to function is undefined */}
423 return cpu_addr;;
}
448 return tmp;;
}
19 return tmp;;
}
571 lynx->rcv_start_pcl = (struct pcl *)tmp___3;
573 -pci_alloc_consistent(lynx->pci_device, 128UL, &(lynx->rcv_pcl_bus))
{
18 void *tmp;
19 struct device *__CPAchecker_TMP_0;
19 assume(!(((unsigned long)hwdev) != ((unsigned long)((struct pci_dev *)0))));
19 __CPAchecker_TMP_0 = (struct device *)0;
19 -dma_alloc_coherent(__CPAchecker_TMP_0, size, dma_handle, 34078752U)
{
448 void *tmp;
448 -dma_alloc_attrs(dev, size, dma_handle, flag, 0UL)
{
407 struct dma_map_ops *ops;
408 struct dma_map_ops *tmp;
409 void *cpu_addr;
410 long tmp___0;
411 _Bool tmp___1;
412 int tmp___2;
408 -get_dma_ops(dev)
{
32 long tmp;
35 -__builtin_expect(((unsigned long)dev) == ((unsigned long)((struct device *)0)), 0L)
{
52 return exp;;
}
35 assume(tmp != 0L);
36 return dma_ops;;
}
408 ops = tmp;
411 -__builtin_expect(((unsigned long)ops) == ((unsigned long)((struct dma_map_ops *)0)), 0L)
{
52 return exp;;
}
411 assume(!(tmp___0 != 0L));
416 tmp___1 = arch_dma_alloc_attrs(&dev, &flag) { /* Function call is skipped due to function is undefined */}
416 assume(!(tmp___1 == 0));
416 tmp___2 = 0;
416 assume(tmp___2 == 0);
418 unsigned long __CPAchecker_TMP_0 = (unsigned long)(ops->alloc);
418 assume(!(__CPAchecker_TMP_0 == ((unsigned long)((void * (*)(struct device *, size_t , dma_addr_t *, gfp_t , unsigned long))0))));
421 cpu_addr = (*(ops->alloc))(dev, size, dma_handle, flag, attrs);
422 debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr) { /* Function call is skipped due to function is undefined */}
423 return cpu_addr;;
}
448 return tmp;;
}
19 return tmp;;
}
573 lynx->rcv_pcl = (struct pcl *)tmp___4;
575 -pci_alloc_consistent(lynx->pci_device, 16384UL, &(lynx->rcv_buffer_bus))
{
18 void *tmp;
19 struct device *__CPAchecker_TMP_0;
19 assume(!(((unsigned long)hwdev) != ((unsigned long)((struct pci_dev *)0))));
19 __CPAchecker_TMP_0 = (struct device *)0;
19 -dma_alloc_coherent(__CPAchecker_TMP_0, size, dma_handle, 34078752U)
{
448 void *tmp;
448 -dma_alloc_attrs(dev, size, dma_handle, flag, 0UL)
{
407 struct dma_map_ops *ops;
408 struct dma_map_ops *tmp;
409 void *cpu_addr;
410 long tmp___0;
411 _Bool tmp___1;
412 int tmp___2;
408 -get_dma_ops(dev)
{
32 long tmp;
35 -__builtin_expect(((unsigned long)dev) == ((unsigned long)((struct device *)0)), 0L)
{
52 return exp;;
}
35 assume(tmp != 0L);
36 return dma_ops;;
}
408 ops = tmp;
411 -__builtin_expect(((unsigned long)ops) == ((unsigned long)((struct dma_map_ops *)0)), 0L)
{
52 return exp;;
}
411 assume(!(tmp___0 != 0L));
416 tmp___1 = arch_dma_alloc_attrs(&dev, &flag) { /* Function call is skipped due to function is undefined */}
416 assume(!(tmp___1 == 0));
416 tmp___2 = 0;
416 assume(tmp___2 == 0);
418 unsigned long __CPAchecker_TMP_0 = (unsigned long)(ops->alloc);
418 assume(!(__CPAchecker_TMP_0 == ((unsigned long)((void * (*)(struct device *, size_t , dma_addr_t *, gfp_t , unsigned long))0))));
421 cpu_addr = (*(ops->alloc))(dev, size, dma_handle, flag, attrs);
422 debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr) { /* Function call is skipped due to function is undefined */}
423 return cpu_addr;;
}
448 return tmp;;
}
19 return tmp;;
}
575 lynx->rcv_buffer = (__le32 *)tmp___5;
577 unsigned long __CPAchecker_TMP_0 = (unsigned long)(lynx->rcv_start_pcl);
577 assume(__CPAchecker_TMP_0 == ((unsigned long)((struct pcl *)0)));
580 dev_err((const struct device *)(&(dev->dev)), "Failed to allocate receive buffer\n") { /* Function call is skipped due to function is undefined */}
581 ret = -12;
582 goto fail_deallocate;
673 unsigned long __CPAchecker_TMP_7 = (unsigned long)(lynx->rcv_start_pcl);
673 assume(!(__CPAchecker_TMP_7 != ((unsigned long)((struct pcl *)0))));
676 unsigned long __CPAchecker_TMP_9 = (unsigned long)(lynx->rcv_pcl);
676 assume(!(__CPAchecker_TMP_9 != ((unsigned long)((struct pcl *)0))));
679 unsigned long __CPAchecker_TMP_11 = (unsigned long)(lynx->rcv_buffer);
679 assume(!(__CPAchecker_TMP_11 != ((unsigned long)((__le32 *)0U))));
682 volatile void *__CPAchecker_TMP_13 = (volatile void *)(lynx->registers);
682 -ldv_iounmap_4(__CPAchecker_TMP_13)
{
54 -ldv_io_mem_unmap((const volatile void *)addr)
{
24 assume(LDV_IO_MEMS == 0);
24 -ldv_error()
{
15 LDV_ERROR:;
}
}
}
}
}
Source code
1 #ifndef _ASM_X86_ATOMIC_H 2 #define _ASM_X86_ATOMIC_H 3 4 #include <linux/compiler.h> 5 #include <linux/types.h> 6 #include <asm/alternative.h> 7 #include <asm/cmpxchg.h> 8 #include <asm/rmwcc.h> 9 #include <asm/barrier.h> 10 11 /* 12 * Atomic operations that C can't guarantee us. Useful for 13 * resource counting etc.. 14 */ 15 16 #define ATOMIC_INIT(i) { (i) } 17 18 /** 19 * atomic_read - read atomic variable 20 * @v: pointer of type atomic_t 21 * 22 * Atomically reads the value of @v. 23 */ 24 static __always_inline int atomic_read(const atomic_t *v) 25 { 26 return READ_ONCE((v)->counter); 27 } 28 29 /** 30 * atomic_set - set atomic variable 31 * @v: pointer of type atomic_t 32 * @i: required value 33 * 34 * Atomically sets the value of @v to @i. 35 */ 36 static __always_inline void atomic_set(atomic_t *v, int i) 37 { 38 WRITE_ONCE(v->counter, i); 39 } 40 41 /** 42 * atomic_add - add integer to atomic variable 43 * @i: integer value to add 44 * @v: pointer of type atomic_t 45 * 46 * Atomically adds @i to @v. 47 */ 48 static __always_inline void atomic_add(int i, atomic_t *v) 49 { 50 asm volatile(LOCK_PREFIX "addl %1,%0" 51 : "+m" (v->counter) 52 : "ir" (i)); 53 } 54 55 /** 56 * atomic_sub - subtract integer from atomic variable 57 * @i: integer value to subtract 58 * @v: pointer of type atomic_t 59 * 60 * Atomically subtracts @i from @v. 61 */ 62 static __always_inline void atomic_sub(int i, atomic_t *v) 63 { 64 asm volatile(LOCK_PREFIX "subl %1,%0" 65 : "+m" (v->counter) 66 : "ir" (i)); 67 } 68 69 /** 70 * atomic_sub_and_test - subtract value from variable and test result 71 * @i: integer value to subtract 72 * @v: pointer of type atomic_t 73 * 74 * Atomically subtracts @i from @v and returns 75 * true if the result is zero, or false for all 76 * other cases. 77 */ 78 static __always_inline bool atomic_sub_and_test(int i, atomic_t *v) 79 { 80 GEN_BINARY_RMWcc(LOCK_PREFIX "subl", v->counter, "er", i, "%0", e); 81 } 82 83 /** 84 * atomic_inc - increment atomic variable 85 * @v: pointer of type atomic_t 86 * 87 * Atomically increments @v by 1. 88 */ 89 static __always_inline void atomic_inc(atomic_t *v) 90 { 91 asm volatile(LOCK_PREFIX "incl %0" 92 : "+m" (v->counter)); 93 } 94 95 /** 96 * atomic_dec - decrement atomic variable 97 * @v: pointer of type atomic_t 98 * 99 * Atomically decrements @v by 1. 100 */ 101 static __always_inline void atomic_dec(atomic_t *v) 102 { 103 asm volatile(LOCK_PREFIX "decl %0" 104 : "+m" (v->counter)); 105 } 106 107 /** 108 * atomic_dec_and_test - decrement and test 109 * @v: pointer of type atomic_t 110 * 111 * Atomically decrements @v by 1 and 112 * returns true if the result is 0, or false for all other 113 * cases. 114 */ 115 static __always_inline bool atomic_dec_and_test(atomic_t *v) 116 { 117 GEN_UNARY_RMWcc(LOCK_PREFIX "decl", v->counter, "%0", e); 118 } 119 120 /** 121 * atomic_inc_and_test - increment and test 122 * @v: pointer of type atomic_t 123 * 124 * Atomically increments @v by 1 125 * and returns true if the result is zero, or false for all 126 * other cases. 127 */ 128 static __always_inline bool atomic_inc_and_test(atomic_t *v) 129 { 130 GEN_UNARY_RMWcc(LOCK_PREFIX "incl", v->counter, "%0", e); 131 } 132 133 /** 134 * atomic_add_negative - add and test if negative 135 * @i: integer value to add 136 * @v: pointer of type atomic_t 137 * 138 * Atomically adds @i to @v and returns true 139 * if the result is negative, or false when 140 * result is greater than or equal to zero. 141 */ 142 static __always_inline bool atomic_add_negative(int i, atomic_t *v) 143 { 144 GEN_BINARY_RMWcc(LOCK_PREFIX "addl", v->counter, "er", i, "%0", s); 145 } 146 147 /** 148 * atomic_add_return - add integer and return 149 * @i: integer value to add 150 * @v: pointer of type atomic_t 151 * 152 * Atomically adds @i to @v and returns @i + @v 153 */ 154 static __always_inline int atomic_add_return(int i, atomic_t *v) 155 { 156 return i + xadd(&v->counter, i); 157 } 158 159 /** 160 * atomic_sub_return - subtract integer and return 161 * @v: pointer of type atomic_t 162 * @i: integer value to subtract 163 * 164 * Atomically subtracts @i from @v and returns @v - @i 165 */ 166 static __always_inline int atomic_sub_return(int i, atomic_t *v) 167 { 168 return atomic_add_return(-i, v); 169 } 170 171 #define atomic_inc_return(v) (atomic_add_return(1, v)) 172 #define atomic_dec_return(v) (atomic_sub_return(1, v)) 173 174 static __always_inline int atomic_fetch_add(int i, atomic_t *v) 175 { 176 return xadd(&v->counter, i); 177 } 178 179 static __always_inline int atomic_fetch_sub(int i, atomic_t *v) 180 { 181 return xadd(&v->counter, -i); 182 } 183 184 static __always_inline int atomic_cmpxchg(atomic_t *v, int old, int new) 185 { 186 return cmpxchg(&v->counter, old, new); 187 } 188 189 static inline int atomic_xchg(atomic_t *v, int new) 190 { 191 return xchg(&v->counter, new); 192 } 193 194 #define ATOMIC_OP(op) \ 195 static inline void atomic_##op(int i, atomic_t *v) \ 196 { \ 197 asm volatile(LOCK_PREFIX #op"l %1,%0" \ 198 : "+m" (v->counter) \ 199 : "ir" (i) \ 200 : "memory"); \ 201 } 202 203 #define ATOMIC_FETCH_OP(op, c_op) \ 204 static inline int atomic_fetch_##op(int i, atomic_t *v) \ 205 { \ 206 int old, val = atomic_read(v); \ 207 for (;;) { \ 208 old = atomic_cmpxchg(v, val, val c_op i); \ 209 if (old == val) \ 210 break; \ 211 val = old; \ 212 } \ 213 return old; \ 214 } 215 216 #define ATOMIC_OPS(op, c_op) \ 217 ATOMIC_OP(op) \ 218 ATOMIC_FETCH_OP(op, c_op) 219 220 ATOMIC_OPS(and, &) 221 ATOMIC_OPS(or , |) 222 ATOMIC_OPS(xor, ^) 223 224 #undef ATOMIC_OPS 225 #undef ATOMIC_FETCH_OP 226 #undef ATOMIC_OP 227 228 /** 229 * __atomic_add_unless - add unless the number is already a given value 230 * @v: pointer of type atomic_t 231 * @a: the amount to add to v... 232 * @u: ...unless v is equal to u. 233 * 234 * Atomically adds @a to @v, so long as @v was not already @u. 235 * Returns the old value of @v. 236 */ 237 static __always_inline int __atomic_add_unless(atomic_t *v, int a, int u) 238 { 239 int c, old; 240 c = atomic_read(v); 241 for (;;) { 242 if (unlikely(c == (u))) 243 break; 244 old = atomic_cmpxchg((v), c, c + (a)); 245 if (likely(old == c)) 246 break; 247 c = old; 248 } 249 return c; 250 } 251 252 /** 253 * atomic_inc_short - increment of a short integer 254 * @v: pointer to type int 255 * 256 * Atomically adds 1 to @v 257 * Returns the new value of @u 258 */ 259 static __always_inline short int atomic_inc_short(short int *v) 260 { 261 asm(LOCK_PREFIX "addw $1, %0" : "+m" (*v)); 262 return *v; 263 } 264 265 #ifdef CONFIG_X86_32 266 # include <asm/atomic64_32.h> 267 #else 268 # include <asm/atomic64_64.h> 269 #endif 270 271 #endif /* _ASM_X86_ATOMIC_H */
1 #ifndef _ASM_X86_DMA_MAPPING_H 2 #define _ASM_X86_DMA_MAPPING_H 3 4 /* 5 * IOMMU interface. See Documentation/DMA-API-HOWTO.txt and 6 * Documentation/DMA-API.txt for documentation. 7 */ 8 9 #include <linux/kmemcheck.h> 10 #include <linux/scatterlist.h> 11 #include <linux/dma-debug.h> 12 #include <asm/io.h> 13 #include <asm/swiotlb.h> 14 #include <linux/dma-contiguous.h> 15 16 #ifdef CONFIG_ISA 17 # define ISA_DMA_BIT_MASK DMA_BIT_MASK(24) 18 #else 19 # define ISA_DMA_BIT_MASK DMA_BIT_MASK(32) 20 #endif 21 22 #define DMA_ERROR_CODE 0 23 24 extern int iommu_merge; 25 extern struct device x86_dma_fallback_dev; 26 extern int panic_on_overflow; 27 28 extern struct dma_map_ops *dma_ops; 29 30 static inline struct dma_map_ops *get_dma_ops(struct device *dev) 31 { 32 #ifndef CONFIG_X86_DEV_DMA_OPS 33 return dma_ops; 34 #else 35 if (unlikely(!dev) || !dev->archdata.dma_ops) 36 return dma_ops; 37 else 38 return dev->archdata.dma_ops; 39 #endif 40 } 41 42 bool arch_dma_alloc_attrs(struct device **dev, gfp_t *gfp); 43 #define arch_dma_alloc_attrs arch_dma_alloc_attrs 44 45 #define HAVE_ARCH_DMA_SUPPORTED 1 46 extern int dma_supported(struct device *hwdev, u64 mask); 47 48 extern void *dma_generic_alloc_coherent(struct device *dev, size_t size, 49 dma_addr_t *dma_addr, gfp_t flag, 50 unsigned long attrs); 51 52 extern void dma_generic_free_coherent(struct device *dev, size_t size, 53 void *vaddr, dma_addr_t dma_addr, 54 unsigned long attrs); 55 56 #ifdef CONFIG_X86_DMA_REMAP /* Platform code defines bridge-specific code */ 57 extern bool dma_capable(struct device *dev, dma_addr_t addr, size_t size); 58 extern dma_addr_t phys_to_dma(struct device *dev, phys_addr_t paddr); 59 extern phys_addr_t dma_to_phys(struct device *dev, dma_addr_t daddr); 60 #else 61 62 static inline bool dma_capable(struct device *dev, dma_addr_t addr, size_t size) 63 { 64 if (!dev->dma_mask) 65 return 0; 66 67 return addr + size - 1 <= *dev->dma_mask; 68 } 69 70 static inline dma_addr_t phys_to_dma(struct device *dev, phys_addr_t paddr) 71 { 72 return paddr; 73 } 74 75 static inline phys_addr_t dma_to_phys(struct device *dev, dma_addr_t daddr) 76 { 77 return daddr; 78 } 79 #endif /* CONFIG_X86_DMA_REMAP */ 80 81 static inline void 82 dma_cache_sync(struct device *dev, void *vaddr, size_t size, 83 enum dma_data_direction dir) 84 { 85 flush_write_buffers(); 86 } 87 88 static inline unsigned long dma_alloc_coherent_mask(struct device *dev, 89 gfp_t gfp) 90 { 91 unsigned long dma_mask = 0; 92 93 dma_mask = dev->coherent_dma_mask; 94 if (!dma_mask) 95 dma_mask = (gfp & GFP_DMA) ? DMA_BIT_MASK(24) : DMA_BIT_MASK(32); 96 97 return dma_mask; 98 } 99 100 static inline gfp_t dma_alloc_coherent_gfp_flags(struct device *dev, gfp_t gfp) 101 { 102 unsigned long dma_mask = dma_alloc_coherent_mask(dev, gfp); 103 104 if (dma_mask <= DMA_BIT_MASK(24)) 105 gfp |= GFP_DMA; 106 #ifdef CONFIG_X86_64 107 if (dma_mask <= DMA_BIT_MASK(32) && !(gfp & GFP_DMA)) 108 gfp |= GFP_DMA32; 109 #endif 110 return gfp; 111 } 112 113 #endif
1 2 /* 3 * nosy - Snoop mode driver for TI PCILynx 1394 controllers 4 * Copyright (C) 2002-2007 Kristian Høgsberg 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software Foundation, 18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 19 */ 20 21 #include <linux/device.h> 22 #include <linux/errno.h> 23 #include <linux/fs.h> 24 #include <linux/init.h> 25 #include <linux/interrupt.h> 26 #include <linux/io.h> 27 #include <linux/kernel.h> 28 #include <linux/kref.h> 29 #include <linux/miscdevice.h> 30 #include <linux/module.h> 31 #include <linux/mutex.h> 32 #include <linux/pci.h> 33 #include <linux/poll.h> 34 #include <linux/sched.h> /* required for linux/wait.h */ 35 #include <linux/slab.h> 36 #include <linux/spinlock.h> 37 #include <linux/time64.h> 38 #include <linux/timex.h> 39 #include <linux/uaccess.h> 40 #include <linux/wait.h> 41 #include <linux/dma-mapping.h> 42 #include <linux/atomic.h> 43 #include <asm/byteorder.h> 44 45 #include "nosy.h" 46 #include "nosy-user.h" 47 48 #define TCODE_PHY_PACKET 0x10 49 #define PCI_DEVICE_ID_TI_PCILYNX 0x8000 50 51 static char driver_name[] = KBUILD_MODNAME; 52 53 /* this is the physical layout of a PCL, its size is 128 bytes */ 54 struct pcl { 55 __le32 next; 56 __le32 async_error_next; 57 u32 user_data; 58 __le32 pcl_status; 59 __le32 remaining_transfer_count; 60 __le32 next_data_buffer; 61 struct { 62 __le32 control; 63 __le32 pointer; 64 } buffer[13]; 65 }; 66 67 struct packet { 68 unsigned int length; 69 char data[0]; 70 }; 71 72 struct packet_buffer { 73 char *data; 74 size_t capacity; 75 long total_packet_count, lost_packet_count; 76 atomic_t size; 77 struct packet *head, *tail; 78 wait_queue_head_t wait; 79 }; 80 81 struct pcilynx { 82 struct pci_dev *pci_device; 83 __iomem char *registers; 84 85 struct pcl *rcv_start_pcl, *rcv_pcl; 86 __le32 *rcv_buffer; 87 88 dma_addr_t rcv_start_pcl_bus, rcv_pcl_bus, rcv_buffer_bus; 89 90 spinlock_t client_list_lock; 91 struct list_head client_list; 92 93 struct miscdevice misc; 94 struct list_head link; 95 struct kref kref; 96 }; 97 98 static inline struct pcilynx * 99 lynx_get(struct pcilynx *lynx) 100 { 101 kref_get(&lynx->kref); 102 103 return lynx; 104 } 105 106 static void 107 lynx_release(struct kref *kref) 108 { 109 kfree(container_of(kref, struct pcilynx, kref)); 110 } 111 112 static inline void 113 lynx_put(struct pcilynx *lynx) 114 { 115 kref_put(&lynx->kref, lynx_release); 116 } 117 118 struct client { 119 struct pcilynx *lynx; 120 u32 tcode_mask; 121 struct packet_buffer buffer; 122 struct list_head link; 123 }; 124 125 static DEFINE_MUTEX(card_mutex); 126 static LIST_HEAD(card_list); 127 128 static int 129 packet_buffer_init(struct packet_buffer *buffer, size_t capacity) 130 { 131 buffer->data = kmalloc(capacity, GFP_KERNEL); 132 if (buffer->data == NULL) 133 return -ENOMEM; 134 buffer->head = (struct packet *) buffer->data; 135 buffer->tail = (struct packet *) buffer->data; 136 buffer->capacity = capacity; 137 buffer->lost_packet_count = 0; 138 atomic_set(&buffer->size, 0); 139 init_waitqueue_head(&buffer->wait); 140 141 return 0; 142 } 143 144 static void 145 packet_buffer_destroy(struct packet_buffer *buffer) 146 { 147 kfree(buffer->data); 148 } 149 150 static int 151 packet_buffer_get(struct client *client, char __user *data, size_t user_length) 152 { 153 struct packet_buffer *buffer = &client->buffer; 154 size_t length; 155 char *end; 156 157 if (wait_event_interruptible(buffer->wait, 158 atomic_read(&buffer->size) > 0) || 159 list_empty(&client->lynx->link)) 160 return -ERESTARTSYS; 161 162 if (atomic_read(&buffer->size) == 0) 163 return -ENODEV; 164 165 /* FIXME: Check length <= user_length. */ 166 167 end = buffer->data + buffer->capacity; 168 length = buffer->head->length; 169 170 if (&buffer->head->data[length] < end) { 171 if (copy_to_user(data, buffer->head->data, length)) 172 return -EFAULT; 173 buffer->head = (struct packet *) &buffer->head->data[length]; 174 } else { 175 size_t split = end - buffer->head->data; 176 177 if (copy_to_user(data, buffer->head->data, split)) 178 return -EFAULT; 179 if (copy_to_user(data + split, buffer->data, length - split)) 180 return -EFAULT; 181 buffer->head = (struct packet *) &buffer->data[length - split]; 182 } 183 184 /* 185 * Decrease buffer->size as the last thing, since this is what 186 * keeps the interrupt from overwriting the packet we are 187 * retrieving from the buffer. 188 */ 189 atomic_sub(sizeof(struct packet) + length, &buffer->size); 190 191 return length; 192 } 193 194 static void 195 packet_buffer_put(struct packet_buffer *buffer, void *data, size_t length) 196 { 197 char *end; 198 199 buffer->total_packet_count++; 200 201 if (buffer->capacity < 202 atomic_read(&buffer->size) + sizeof(struct packet) + length) { 203 buffer->lost_packet_count++; 204 return; 205 } 206 207 end = buffer->data + buffer->capacity; 208 buffer->tail->length = length; 209 210 if (&buffer->tail->data[length] < end) { 211 memcpy(buffer->tail->data, data, length); 212 buffer->tail = (struct packet *) &buffer->tail->data[length]; 213 } else { 214 size_t split = end - buffer->tail->data; 215 216 memcpy(buffer->tail->data, data, split); 217 memcpy(buffer->data, data + split, length - split); 218 buffer->tail = (struct packet *) &buffer->data[length - split]; 219 } 220 221 /* Finally, adjust buffer size and wake up userspace reader. */ 222 223 atomic_add(sizeof(struct packet) + length, &buffer->size); 224 wake_up_interruptible(&buffer->wait); 225 } 226 227 static inline void 228 reg_write(struct pcilynx *lynx, int offset, u32 data) 229 { 230 writel(data, lynx->registers + offset); 231 } 232 233 static inline u32 234 reg_read(struct pcilynx *lynx, int offset) 235 { 236 return readl(lynx->registers + offset); 237 } 238 239 static inline void 240 reg_set_bits(struct pcilynx *lynx, int offset, u32 mask) 241 { 242 reg_write(lynx, offset, (reg_read(lynx, offset) | mask)); 243 } 244 245 /* 246 * Maybe the pcl programs could be set up to just append data instead 247 * of using a whole packet. 248 */ 249 static inline void 250 run_pcl(struct pcilynx *lynx, dma_addr_t pcl_bus, 251 int dmachan) 252 { 253 reg_write(lynx, DMA0_CURRENT_PCL + dmachan * 0x20, pcl_bus); 254 reg_write(lynx, DMA0_CHAN_CTRL + dmachan * 0x20, 255 DMA_CHAN_CTRL_ENABLE | DMA_CHAN_CTRL_LINK); 256 } 257 258 static int 259 set_phy_reg(struct pcilynx *lynx, int addr, int val) 260 { 261 if (addr > 15) { 262 dev_err(&lynx->pci_device->dev, 263 "PHY register address %d out of range\n", addr); 264 return -1; 265 } 266 if (val > 0xff) { 267 dev_err(&lynx->pci_device->dev, 268 "PHY register value %d out of range\n", val); 269 return -1; 270 } 271 reg_write(lynx, LINK_PHY, LINK_PHY_WRITE | 272 LINK_PHY_ADDR(addr) | LINK_PHY_WDATA(val)); 273 274 return 0; 275 } 276 277 static int 278 nosy_open(struct inode *inode, struct file *file) 279 { 280 int minor = iminor(inode); 281 struct client *client; 282 struct pcilynx *tmp, *lynx = NULL; 283 284 mutex_lock(&card_mutex); 285 list_for_each_entry(tmp, &card_list, link) 286 if (tmp->misc.minor == minor) { 287 lynx = lynx_get(tmp); 288 break; 289 } 290 mutex_unlock(&card_mutex); 291 if (lynx == NULL) 292 return -ENODEV; 293 294 client = kmalloc(sizeof *client, GFP_KERNEL); 295 if (client == NULL) 296 goto fail; 297 298 client->tcode_mask = ~0; 299 client->lynx = lynx; 300 INIT_LIST_HEAD(&client->link); 301 302 if (packet_buffer_init(&client->buffer, 128 * 1024) < 0) 303 goto fail; 304 305 file->private_data = client; 306 307 return nonseekable_open(inode, file); 308 fail: 309 kfree(client); 310 lynx_put(lynx); 311 312 return -ENOMEM; 313 } 314 315 static int 316 nosy_release(struct inode *inode, struct file *file) 317 { 318 struct client *client = file->private_data; 319 struct pcilynx *lynx = client->lynx; 320 321 spin_lock_irq(&lynx->client_list_lock); 322 list_del_init(&client->link); 323 spin_unlock_irq(&lynx->client_list_lock); 324 325 packet_buffer_destroy(&client->buffer); 326 kfree(client); 327 lynx_put(lynx); 328 329 return 0; 330 } 331 332 static unsigned int 333 nosy_poll(struct file *file, poll_table *pt) 334 { 335 struct client *client = file->private_data; 336 unsigned int ret = 0; 337 338 poll_wait(file, &client->buffer.wait, pt); 339 340 if (atomic_read(&client->buffer.size) > 0) 341 ret = POLLIN | POLLRDNORM; 342 343 if (list_empty(&client->lynx->link)) 344 ret |= POLLHUP; 345 346 return ret; 347 } 348 349 static ssize_t 350 nosy_read(struct file *file, char __user *buffer, size_t count, loff_t *offset) 351 { 352 struct client *client = file->private_data; 353 354 return packet_buffer_get(client, buffer, count); 355 } 356 357 static long 358 nosy_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 359 { 360 struct client *client = file->private_data; 361 spinlock_t *client_list_lock = &client->lynx->client_list_lock; 362 struct nosy_stats stats; 363 364 switch (cmd) { 365 case NOSY_IOC_GET_STATS: 366 spin_lock_irq(client_list_lock); 367 stats.total_packet_count = client->buffer.total_packet_count; 368 stats.lost_packet_count = client->buffer.lost_packet_count; 369 spin_unlock_irq(client_list_lock); 370 371 if (copy_to_user((void __user *) arg, &stats, sizeof stats)) 372 return -EFAULT; 373 else 374 return 0; 375 376 case NOSY_IOC_START: 377 spin_lock_irq(client_list_lock); 378 list_add_tail(&client->link, &client->lynx->client_list); 379 spin_unlock_irq(client_list_lock); 380 381 return 0; 382 383 case NOSY_IOC_STOP: 384 spin_lock_irq(client_list_lock); 385 list_del_init(&client->link); 386 spin_unlock_irq(client_list_lock); 387 388 return 0; 389 390 case NOSY_IOC_FILTER: 391 spin_lock_irq(client_list_lock); 392 client->tcode_mask = arg; 393 spin_unlock_irq(client_list_lock); 394 395 return 0; 396 397 default: 398 return -EINVAL; 399 /* Flush buffer, configure filter. */ 400 } 401 } 402 403 static const struct file_operations nosy_ops = { 404 .owner = THIS_MODULE, 405 .read = nosy_read, 406 .unlocked_ioctl = nosy_ioctl, 407 .poll = nosy_poll, 408 .open = nosy_open, 409 .release = nosy_release, 410 }; 411 412 #define PHY_PACKET_SIZE 12 /* 1 payload, 1 inverse, 1 ack = 3 quadlets */ 413 414 static void 415 packet_irq_handler(struct pcilynx *lynx) 416 { 417 struct client *client; 418 u32 tcode_mask, tcode, timestamp; 419 size_t length; 420 struct timespec64 ts64; 421 422 /* FIXME: Also report rcv_speed. */ 423 424 length = __le32_to_cpu(lynx->rcv_pcl->pcl_status) & 0x00001fff; 425 tcode = __le32_to_cpu(lynx->rcv_buffer[1]) >> 4 & 0xf; 426 427 ktime_get_real_ts64(&ts64); 428 timestamp = ts64.tv_nsec / NSEC_PER_USEC; 429 lynx->rcv_buffer[0] = (__force __le32)timestamp; 430 431 if (length == PHY_PACKET_SIZE) 432 tcode_mask = 1 << TCODE_PHY_PACKET; 433 else 434 tcode_mask = 1 << tcode; 435 436 spin_lock(&lynx->client_list_lock); 437 438 list_for_each_entry(client, &lynx->client_list, link) 439 if (client->tcode_mask & tcode_mask) 440 packet_buffer_put(&client->buffer, 441 lynx->rcv_buffer, length + 4); 442 443 spin_unlock(&lynx->client_list_lock); 444 } 445 446 static void 447 bus_reset_irq_handler(struct pcilynx *lynx) 448 { 449 struct client *client; 450 struct timespec64 ts64; 451 u32 timestamp; 452 453 ktime_get_real_ts64(&ts64); 454 timestamp = ts64.tv_nsec / NSEC_PER_USEC; 455 456 spin_lock(&lynx->client_list_lock); 457 458 list_for_each_entry(client, &lynx->client_list, link) 459 packet_buffer_put(&client->buffer, &timestamp, 4); 460 461 spin_unlock(&lynx->client_list_lock); 462 } 463 464 static irqreturn_t 465 irq_handler(int irq, void *device) 466 { 467 struct pcilynx *lynx = device; 468 u32 pci_int_status; 469 470 pci_int_status = reg_read(lynx, PCI_INT_STATUS); 471 472 if (pci_int_status == ~0) 473 /* Card was ejected. */ 474 return IRQ_NONE; 475 476 if ((pci_int_status & PCI_INT_INT_PEND) == 0) 477 /* Not our interrupt, bail out quickly. */ 478 return IRQ_NONE; 479 480 if ((pci_int_status & PCI_INT_P1394_INT) != 0) { 481 u32 link_int_status; 482 483 link_int_status = reg_read(lynx, LINK_INT_STATUS); 484 reg_write(lynx, LINK_INT_STATUS, link_int_status); 485 486 if ((link_int_status & LINK_INT_PHY_BUSRESET) > 0) 487 bus_reset_irq_handler(lynx); 488 } 489 490 /* Clear the PCI_INT_STATUS register only after clearing the 491 * LINK_INT_STATUS register; otherwise the PCI_INT_P1394 will 492 * be set again immediately. */ 493 494 reg_write(lynx, PCI_INT_STATUS, pci_int_status); 495 496 if ((pci_int_status & PCI_INT_DMA0_HLT) > 0) { 497 packet_irq_handler(lynx); 498 run_pcl(lynx, lynx->rcv_start_pcl_bus, 0); 499 } 500 501 return IRQ_HANDLED; 502 } 503 504 static void 505 remove_card(struct pci_dev *dev) 506 { 507 struct pcilynx *lynx = pci_get_drvdata(dev); 508 struct client *client; 509 510 mutex_lock(&card_mutex); 511 list_del_init(&lynx->link); 512 misc_deregister(&lynx->misc); 513 mutex_unlock(&card_mutex); 514 515 reg_write(lynx, PCI_INT_ENABLE, 0); 516 free_irq(lynx->pci_device->irq, lynx); 517 518 spin_lock_irq(&lynx->client_list_lock); 519 list_for_each_entry(client, &lynx->client_list, link) 520 wake_up_interruptible(&client->buffer.wait); 521 spin_unlock_irq(&lynx->client_list_lock); 522 523 pci_free_consistent(lynx->pci_device, sizeof(struct pcl), 524 lynx->rcv_start_pcl, lynx->rcv_start_pcl_bus); 525 pci_free_consistent(lynx->pci_device, sizeof(struct pcl), 526 lynx->rcv_pcl, lynx->rcv_pcl_bus); 527 pci_free_consistent(lynx->pci_device, PAGE_SIZE, 528 lynx->rcv_buffer, lynx->rcv_buffer_bus); 529 530 iounmap(lynx->registers); 531 pci_disable_device(dev); 532 lynx_put(lynx); 533 } 534 535 #define RCV_BUFFER_SIZE (16 * 1024) 536 537 static int 538 add_card(struct pci_dev *dev, const struct pci_device_id *unused) 539 { 540 struct pcilynx *lynx; 541 u32 p, end; 542 int ret, i; 543 544 if (pci_set_dma_mask(dev, DMA_BIT_MASK(32))) { 545 dev_err(&dev->dev, 546 "DMA address limits not supported for PCILynx hardware\n"); 547 return -ENXIO; 548 } 549 if (pci_enable_device(dev)) { 550 dev_err(&dev->dev, "Failed to enable PCILynx hardware\n"); 551 return -ENXIO; 552 } 553 pci_set_master(dev); 554 555 lynx = kzalloc(sizeof *lynx, GFP_KERNEL); 556 if (lynx == NULL) { 557 dev_err(&dev->dev, "Failed to allocate control structure\n"); 558 ret = -ENOMEM; 559 goto fail_disable; 560 } 561 lynx->pci_device = dev; 562 pci_set_drvdata(dev, lynx); 563 564 spin_lock_init(&lynx->client_list_lock); 565 INIT_LIST_HEAD(&lynx->client_list); 566 kref_init(&lynx->kref); 567 568 lynx->registers = ioremap_nocache(pci_resource_start(dev, 0), 569 PCILYNX_MAX_REGISTER); 570 571 lynx->rcv_start_pcl = pci_alloc_consistent(lynx->pci_device, 572 sizeof(struct pcl), &lynx->rcv_start_pcl_bus); 573 lynx->rcv_pcl = pci_alloc_consistent(lynx->pci_device, 574 sizeof(struct pcl), &lynx->rcv_pcl_bus); 575 lynx->rcv_buffer = pci_alloc_consistent(lynx->pci_device, 576 RCV_BUFFER_SIZE, &lynx->rcv_buffer_bus); 577 if (lynx->rcv_start_pcl == NULL || 578 lynx->rcv_pcl == NULL || 579 lynx->rcv_buffer == NULL) { 580 dev_err(&dev->dev, "Failed to allocate receive buffer\n"); 581 ret = -ENOMEM; 582 goto fail_deallocate; 583 } 584 lynx->rcv_start_pcl->next = cpu_to_le32(lynx->rcv_pcl_bus); 585 lynx->rcv_pcl->next = cpu_to_le32(PCL_NEXT_INVALID); 586 lynx->rcv_pcl->async_error_next = cpu_to_le32(PCL_NEXT_INVALID); 587 588 lynx->rcv_pcl->buffer[0].control = 589 cpu_to_le32(PCL_CMD_RCV | PCL_BIGENDIAN | 2044); 590 lynx->rcv_pcl->buffer[0].pointer = 591 cpu_to_le32(lynx->rcv_buffer_bus + 4); 592 p = lynx->rcv_buffer_bus + 2048; 593 end = lynx->rcv_buffer_bus + RCV_BUFFER_SIZE; 594 for (i = 1; p < end; i++, p += 2048) { 595 lynx->rcv_pcl->buffer[i].control = 596 cpu_to_le32(PCL_CMD_RCV | PCL_BIGENDIAN | 2048); 597 lynx->rcv_pcl->buffer[i].pointer = cpu_to_le32(p); 598 } 599 lynx->rcv_pcl->buffer[i - 1].control |= cpu_to_le32(PCL_LAST_BUFF); 600 601 reg_set_bits(lynx, MISC_CONTROL, MISC_CONTROL_SWRESET); 602 /* Fix buggy cards with autoboot pin not tied low: */ 603 reg_write(lynx, DMA0_CHAN_CTRL, 0); 604 reg_write(lynx, DMA_GLOBAL_REGISTER, 0x00 << 24); 605 606 #if 0 607 /* now, looking for PHY register set */ 608 if ((get_phy_reg(lynx, 2) & 0xe0) == 0xe0) { 609 lynx->phyic.reg_1394a = 1; 610 PRINT(KERN_INFO, lynx->id, 611 "found 1394a conform PHY (using extended register set)"); 612 lynx->phyic.vendor = get_phy_vendorid(lynx); 613 lynx->phyic.product = get_phy_productid(lynx); 614 } else { 615 lynx->phyic.reg_1394a = 0; 616 PRINT(KERN_INFO, lynx->id, "found old 1394 PHY"); 617 } 618 #endif 619 620 /* Setup the general receive FIFO max size. */ 621 reg_write(lynx, FIFO_SIZES, 255); 622 623 reg_set_bits(lynx, PCI_INT_ENABLE, PCI_INT_DMA_ALL); 624 625 reg_write(lynx, LINK_INT_ENABLE, 626 LINK_INT_PHY_TIME_OUT | LINK_INT_PHY_REG_RCVD | 627 LINK_INT_PHY_BUSRESET | LINK_INT_IT_STUCK | 628 LINK_INT_AT_STUCK | LINK_INT_SNTRJ | 629 LINK_INT_TC_ERR | LINK_INT_GRF_OVER_FLOW | 630 LINK_INT_ITF_UNDER_FLOW | LINK_INT_ATF_UNDER_FLOW); 631 632 /* Disable the L flag in self ID packets. */ 633 set_phy_reg(lynx, 4, 0); 634 635 /* Put this baby into snoop mode */ 636 reg_set_bits(lynx, LINK_CONTROL, LINK_CONTROL_SNOOP_ENABLE); 637 638 run_pcl(lynx, lynx->rcv_start_pcl_bus, 0); 639 640 if (request_irq(dev->irq, irq_handler, IRQF_SHARED, 641 driver_name, lynx)) { 642 dev_err(&dev->dev, 643 "Failed to allocate shared interrupt %d\n", dev->irq); 644 ret = -EIO; 645 goto fail_deallocate; 646 } 647 648 lynx->misc.parent = &dev->dev; 649 lynx->misc.minor = MISC_DYNAMIC_MINOR; 650 lynx->misc.name = "nosy"; 651 lynx->misc.fops = &nosy_ops; 652 653 mutex_lock(&card_mutex); 654 ret = misc_register(&lynx->misc); 655 if (ret) { 656 dev_err(&dev->dev, "Failed to register misc char device\n"); 657 mutex_unlock(&card_mutex); 658 goto fail_free_irq; 659 } 660 list_add_tail(&lynx->link, &card_list); 661 mutex_unlock(&card_mutex); 662 663 dev_info(&dev->dev, 664 "Initialized PCILynx IEEE1394 card, irq=%d\n", dev->irq); 665 666 return 0; 667 668 fail_free_irq: 669 reg_write(lynx, PCI_INT_ENABLE, 0); 670 free_irq(lynx->pci_device->irq, lynx); 671 672 fail_deallocate: 673 if (lynx->rcv_start_pcl) 674 pci_free_consistent(lynx->pci_device, sizeof(struct pcl), 675 lynx->rcv_start_pcl, lynx->rcv_start_pcl_bus); 676 if (lynx->rcv_pcl) 677 pci_free_consistent(lynx->pci_device, sizeof(struct pcl), 678 lynx->rcv_pcl, lynx->rcv_pcl_bus); 679 if (lynx->rcv_buffer) 680 pci_free_consistent(lynx->pci_device, PAGE_SIZE, 681 lynx->rcv_buffer, lynx->rcv_buffer_bus); 682 iounmap(lynx->registers); 683 kfree(lynx); 684 685 fail_disable: 686 pci_disable_device(dev); 687 688 return ret; 689 } 690 691 static struct pci_device_id pci_table[] = { 692 { 693 .vendor = PCI_VENDOR_ID_TI, 694 .device = PCI_DEVICE_ID_TI_PCILYNX, 695 .subvendor = PCI_ANY_ID, 696 .subdevice = PCI_ANY_ID, 697 }, 698 { } /* Terminating entry */ 699 }; 700 701 MODULE_DEVICE_TABLE(pci, pci_table); 702 703 static struct pci_driver lynx_pci_driver = { 704 .name = driver_name, 705 .id_table = pci_table, 706 .probe = add_card, 707 .remove = remove_card, 708 }; 709 710 module_pci_driver(lynx_pci_driver); 711 712 MODULE_AUTHOR("Kristian Hoegsberg"); 713 MODULE_DESCRIPTION("Snoop mode driver for TI pcilynx 1394 controllers"); 714 MODULE_LICENSE("GPL"); 715 716 717 718 719 720 /* LDV_COMMENT_BEGIN_MAIN */ 721 #ifdef LDV_MAIN0_sequence_infinite_withcheck_stateful 722 723 /*###########################################################################*/ 724 725 /*############## Driver Environment Generator 0.2 output ####################*/ 726 727 /*###########################################################################*/ 728 729 730 731 /* LDV_COMMENT_FUNCTION_DECLARE_LDV Special function for LDV verifier. Test if all kernel resources are correctly released by driver before driver will be unloaded. */ 732 void ldv_check_final_state(void); 733 734 /* LDV_COMMENT_FUNCTION_DECLARE_LDV Special function for LDV verifier. Test correct return result. */ 735 void ldv_check_return_value(int res); 736 737 /* LDV_COMMENT_FUNCTION_DECLARE_LDV Special function for LDV verifier. Test correct return result of probe() function. */ 738 void ldv_check_return_value_probe(int res); 739 740 /* LDV_COMMENT_FUNCTION_DECLARE_LDV Special function for LDV verifier. Initializes the model. */ 741 void ldv_initialize(void); 742 743 /* LDV_COMMENT_FUNCTION_DECLARE_LDV Special function for LDV verifier. Reinitializes the model between distinct model function calls. */ 744 void ldv_handler_precall(void); 745 746 /* LDV_COMMENT_FUNCTION_DECLARE_LDV Special function for LDV verifier. Returns arbitrary interger value. */ 747 int nondet_int(void); 748 749 /* LDV_COMMENT_VAR_DECLARE_LDV Special variable for LDV verifier. */ 750 int LDV_IN_INTERRUPT; 751 752 /* LDV_COMMENT_FUNCTION_MAIN Main function for LDV verifier. */ 753 void ldv_main0_sequence_infinite_withcheck_stateful(void) { 754 755 756 757 /* LDV_COMMENT_BEGIN_VARIABLE_DECLARATION_PART */ 758 /*============================= VARIABLE DECLARATION PART =============================*/ 759 /** STRUCT: struct type: file_operations, struct name: nosy_ops **/ 760 /* content: static ssize_t nosy_read(struct file *file, char __user *buffer, size_t count, loff_t *offset)*/ 761 /* LDV_COMMENT_BEGIN_PREP */ 762 #define TCODE_PHY_PACKET 0x10 763 #define PCI_DEVICE_ID_TI_PCILYNX 0x8000 764 /* LDV_COMMENT_END_PREP */ 765 /* LDV_COMMENT_VAR_DECLARE Variable declaration for function "nosy_read" */ 766 struct file * var_group1; 767 /* LDV_COMMENT_VAR_DECLARE Variable declaration for function "nosy_read" */ 768 char __user * var_nosy_read_15_p1; 769 /* LDV_COMMENT_VAR_DECLARE Variable declaration for function "nosy_read" */ 770 size_t var_nosy_read_15_p2; 771 /* LDV_COMMENT_VAR_DECLARE Variable declaration for function "nosy_read" */ 772 loff_t * var_nosy_read_15_p3; 773 /* LDV_COMMENT_VAR_DECLARE Variable declaration for test return result from function call "nosy_read" */ 774 static ssize_t res_nosy_read_15; 775 /* LDV_COMMENT_BEGIN_PREP */ 776 #define PHY_PACKET_SIZE 12 777 #define RCV_BUFFER_SIZE (16 * 1024) 778 #if 0 779 #endif 780 /* LDV_COMMENT_END_PREP */ 781 /* content: static long nosy_ioctl(struct file *file, unsigned int cmd, unsigned long arg)*/ 782 /* LDV_COMMENT_BEGIN_PREP */ 783 #define TCODE_PHY_PACKET 0x10 784 #define PCI_DEVICE_ID_TI_PCILYNX 0x8000 785 /* LDV_COMMENT_END_PREP */ 786 /* LDV_COMMENT_VAR_DECLARE Variable declaration for function "nosy_ioctl" */ 787 unsigned int var_nosy_ioctl_16_p1; 788 /* LDV_COMMENT_VAR_DECLARE Variable declaration for function "nosy_ioctl" */ 789 unsigned long var_nosy_ioctl_16_p2; 790 /* LDV_COMMENT_BEGIN_PREP */ 791 #define PHY_PACKET_SIZE 12 792 #define RCV_BUFFER_SIZE (16 * 1024) 793 #if 0 794 #endif 795 /* LDV_COMMENT_END_PREP */ 796 /* content: static unsigned int nosy_poll(struct file *file, poll_table *pt)*/ 797 /* LDV_COMMENT_BEGIN_PREP */ 798 #define TCODE_PHY_PACKET 0x10 799 #define PCI_DEVICE_ID_TI_PCILYNX 0x8000 800 /* LDV_COMMENT_END_PREP */ 801 /* LDV_COMMENT_VAR_DECLARE Variable declaration for function "nosy_poll" */ 802 poll_table * var_nosy_poll_14_p1; 803 /* LDV_COMMENT_BEGIN_PREP */ 804 #define PHY_PACKET_SIZE 12 805 #define RCV_BUFFER_SIZE (16 * 1024) 806 #if 0 807 #endif 808 /* LDV_COMMENT_END_PREP */ 809 /* content: static int nosy_open(struct inode *inode, struct file *file)*/ 810 /* LDV_COMMENT_BEGIN_PREP */ 811 #define TCODE_PHY_PACKET 0x10 812 #define PCI_DEVICE_ID_TI_PCILYNX 0x8000 813 /* LDV_COMMENT_END_PREP */ 814 /* LDV_COMMENT_VAR_DECLARE Variable declaration for function "nosy_open" */ 815 struct inode * var_group2; 816 /* LDV_COMMENT_VAR_DECLARE Variable declaration for test return result from function call "nosy_open" */ 817 static int res_nosy_open_12; 818 /* LDV_COMMENT_BEGIN_PREP */ 819 #define PHY_PACKET_SIZE 12 820 #define RCV_BUFFER_SIZE (16 * 1024) 821 #if 0 822 #endif 823 /* LDV_COMMENT_END_PREP */ 824 /* content: static int nosy_release(struct inode *inode, struct file *file)*/ 825 /* LDV_COMMENT_BEGIN_PREP */ 826 #define TCODE_PHY_PACKET 0x10 827 #define PCI_DEVICE_ID_TI_PCILYNX 0x8000 828 /* LDV_COMMENT_END_PREP */ 829 /* LDV_COMMENT_BEGIN_PREP */ 830 #define PHY_PACKET_SIZE 12 831 #define RCV_BUFFER_SIZE (16 * 1024) 832 #if 0 833 #endif 834 /* LDV_COMMENT_END_PREP */ 835 836 /** STRUCT: struct type: pci_driver, struct name: lynx_pci_driver **/ 837 /* content: static int add_card(struct pci_dev *dev, const struct pci_device_id *unused)*/ 838 /* LDV_COMMENT_BEGIN_PREP */ 839 #define TCODE_PHY_PACKET 0x10 840 #define PCI_DEVICE_ID_TI_PCILYNX 0x8000 841 #define PHY_PACKET_SIZE 12 842 #define RCV_BUFFER_SIZE (16 * 1024) 843 /* LDV_COMMENT_END_PREP */ 844 /* LDV_COMMENT_VAR_DECLARE Variable declaration for function "add_card" */ 845 struct pci_dev * var_group3; 846 /* LDV_COMMENT_VAR_DECLARE Variable declaration for function "add_card" */ 847 const struct pci_device_id * var_add_card_21_p1; 848 /* LDV_COMMENT_VAR_DECLARE Variable declaration for test return result from function call "add_card" */ 849 static int res_add_card_21; 850 /* content: static void remove_card(struct pci_dev *dev)*/ 851 /* LDV_COMMENT_BEGIN_PREP */ 852 #define TCODE_PHY_PACKET 0x10 853 #define PCI_DEVICE_ID_TI_PCILYNX 0x8000 854 #define PHY_PACKET_SIZE 12 855 /* LDV_COMMENT_END_PREP */ 856 /* LDV_COMMENT_BEGIN_PREP */ 857 #define RCV_BUFFER_SIZE (16 * 1024) 858 #if 0 859 #endif 860 /* LDV_COMMENT_END_PREP */ 861 862 /** CALLBACK SECTION request_irq **/ 863 /* content: static irqreturn_t irq_handler(int irq, void *device)*/ 864 /* LDV_COMMENT_BEGIN_PREP */ 865 #define TCODE_PHY_PACKET 0x10 866 #define PCI_DEVICE_ID_TI_PCILYNX 0x8000 867 #define PHY_PACKET_SIZE 12 868 /* LDV_COMMENT_END_PREP */ 869 /* LDV_COMMENT_VAR_DECLARE Variable declaration for function "irq_handler" */ 870 int var_irq_handler_19_p0; 871 /* LDV_COMMENT_VAR_DECLARE Variable declaration for function "irq_handler" */ 872 void * var_irq_handler_19_p1; 873 /* LDV_COMMENT_BEGIN_PREP */ 874 #define RCV_BUFFER_SIZE (16 * 1024) 875 #if 0 876 #endif 877 /* LDV_COMMENT_END_PREP */ 878 879 880 881 882 /* LDV_COMMENT_END_VARIABLE_DECLARATION_PART */ 883 /* LDV_COMMENT_BEGIN_VARIABLE_INITIALIZING_PART */ 884 /*============================= VARIABLE INITIALIZING PART =============================*/ 885 LDV_IN_INTERRUPT=1; 886 887 888 889 890 /* LDV_COMMENT_END_VARIABLE_INITIALIZING_PART */ 891 /* LDV_COMMENT_BEGIN_FUNCTION_CALL_SECTION */ 892 /*============================= FUNCTION CALL SECTION =============================*/ 893 /* LDV_COMMENT_FUNCTION_CALL Initialize LDV model. */ 894 ldv_initialize(); 895 int ldv_s_nosy_ops_file_operations = 0; 896 897 898 int ldv_s_lynx_pci_driver_pci_driver = 0; 899 900 901 902 903 while( nondet_int() 904 || !(ldv_s_nosy_ops_file_operations == 0) 905 || !(ldv_s_lynx_pci_driver_pci_driver == 0) 906 ) { 907 908 switch(nondet_int()) { 909 910 case 0: { 911 912 /** STRUCT: struct type: file_operations, struct name: nosy_ops **/ 913 if(ldv_s_nosy_ops_file_operations==0) { 914 915 /* content: static int nosy_open(struct inode *inode, struct file *file)*/ 916 /* LDV_COMMENT_BEGIN_PREP */ 917 #define TCODE_PHY_PACKET 0x10 918 #define PCI_DEVICE_ID_TI_PCILYNX 0x8000 919 /* LDV_COMMENT_END_PREP */ 920 /* LDV_COMMENT_FUNCTION_CALL Function from field "open" from driver structure with callbacks "nosy_ops". Standart function test for correct return result. */ 921 ldv_handler_precall(); 922 res_nosy_open_12 = nosy_open( var_group2, var_group1); 923 ldv_check_return_value(res_nosy_open_12); 924 if(res_nosy_open_12) 925 goto ldv_module_exit; 926 /* LDV_COMMENT_BEGIN_PREP */ 927 #define PHY_PACKET_SIZE 12 928 #define RCV_BUFFER_SIZE (16 * 1024) 929 #if 0 930 #endif 931 /* LDV_COMMENT_END_PREP */ 932 ldv_s_nosy_ops_file_operations++; 933 934 } 935 936 } 937 938 break; 939 case 1: { 940 941 /** STRUCT: struct type: file_operations, struct name: nosy_ops **/ 942 if(ldv_s_nosy_ops_file_operations==1) { 943 944 /* content: static ssize_t nosy_read(struct file *file, char __user *buffer, size_t count, loff_t *offset)*/ 945 /* LDV_COMMENT_BEGIN_PREP */ 946 #define TCODE_PHY_PACKET 0x10 947 #define PCI_DEVICE_ID_TI_PCILYNX 0x8000 948 /* LDV_COMMENT_END_PREP */ 949 /* LDV_COMMENT_FUNCTION_CALL Function from field "read" from driver structure with callbacks "nosy_ops". Standart function test for correct return result. */ 950 ldv_handler_precall(); 951 res_nosy_read_15 = nosy_read( var_group1, var_nosy_read_15_p1, var_nosy_read_15_p2, var_nosy_read_15_p3); 952 ldv_check_return_value(res_nosy_read_15); 953 if(res_nosy_read_15 < 0) 954 goto ldv_module_exit; 955 /* LDV_COMMENT_BEGIN_PREP */ 956 #define PHY_PACKET_SIZE 12 957 #define RCV_BUFFER_SIZE (16 * 1024) 958 #if 0 959 #endif 960 /* LDV_COMMENT_END_PREP */ 961 ldv_s_nosy_ops_file_operations++; 962 963 } 964 965 } 966 967 break; 968 case 2: { 969 970 /** STRUCT: struct type: file_operations, struct name: nosy_ops **/ 971 if(ldv_s_nosy_ops_file_operations==2) { 972 973 /* content: static int nosy_release(struct inode *inode, struct file *file)*/ 974 /* LDV_COMMENT_BEGIN_PREP */ 975 #define TCODE_PHY_PACKET 0x10 976 #define PCI_DEVICE_ID_TI_PCILYNX 0x8000 977 /* LDV_COMMENT_END_PREP */ 978 /* LDV_COMMENT_FUNCTION_CALL Function from field "release" from driver structure with callbacks "nosy_ops" */ 979 ldv_handler_precall(); 980 nosy_release( var_group2, var_group1); 981 /* LDV_COMMENT_BEGIN_PREP */ 982 #define PHY_PACKET_SIZE 12 983 #define RCV_BUFFER_SIZE (16 * 1024) 984 #if 0 985 #endif 986 /* LDV_COMMENT_END_PREP */ 987 ldv_s_nosy_ops_file_operations=0; 988 989 } 990 991 } 992 993 break; 994 case 3: { 995 996 /** STRUCT: struct type: file_operations, struct name: nosy_ops **/ 997 998 999 /* content: static long nosy_ioctl(struct file *file, unsigned int cmd, unsigned long arg)*/ 1000 /* LDV_COMMENT_BEGIN_PREP */ 1001 #define TCODE_PHY_PACKET 0x10 1002 #define PCI_DEVICE_ID_TI_PCILYNX 0x8000 1003 /* LDV_COMMENT_END_PREP */ 1004 /* LDV_COMMENT_FUNCTION_CALL Function from field "unlocked_ioctl" from driver structure with callbacks "nosy_ops" */ 1005 ldv_handler_precall(); 1006 nosy_ioctl( var_group1, var_nosy_ioctl_16_p1, var_nosy_ioctl_16_p2); 1007 /* LDV_COMMENT_BEGIN_PREP */ 1008 #define PHY_PACKET_SIZE 12 1009 #define RCV_BUFFER_SIZE (16 * 1024) 1010 #if 0 1011 #endif 1012 /* LDV_COMMENT_END_PREP */ 1013 1014 1015 1016 1017 } 1018 1019 break; 1020 case 4: { 1021 1022 /** STRUCT: struct type: file_operations, struct name: nosy_ops **/ 1023 1024 1025 /* content: static unsigned int nosy_poll(struct file *file, poll_table *pt)*/ 1026 /* LDV_COMMENT_BEGIN_PREP */ 1027 #define TCODE_PHY_PACKET 0x10 1028 #define PCI_DEVICE_ID_TI_PCILYNX 0x8000 1029 /* LDV_COMMENT_END_PREP */ 1030 /* LDV_COMMENT_FUNCTION_CALL Function from field "poll" from driver structure with callbacks "nosy_ops" */ 1031 ldv_handler_precall(); 1032 nosy_poll( var_group1, var_nosy_poll_14_p1); 1033 /* LDV_COMMENT_BEGIN_PREP */ 1034 #define PHY_PACKET_SIZE 12 1035 #define RCV_BUFFER_SIZE (16 * 1024) 1036 #if 0 1037 #endif 1038 /* LDV_COMMENT_END_PREP */ 1039 1040 1041 1042 1043 } 1044 1045 break; 1046 case 5: { 1047 1048 /** STRUCT: struct type: pci_driver, struct name: lynx_pci_driver **/ 1049 if(ldv_s_lynx_pci_driver_pci_driver==0) { 1050 1051 /* content: static int add_card(struct pci_dev *dev, const struct pci_device_id *unused)*/ 1052 /* LDV_COMMENT_BEGIN_PREP */ 1053 #define TCODE_PHY_PACKET 0x10 1054 #define PCI_DEVICE_ID_TI_PCILYNX 0x8000 1055 #define PHY_PACKET_SIZE 12 1056 #define RCV_BUFFER_SIZE (16 * 1024) 1057 /* LDV_COMMENT_END_PREP */ 1058 /* LDV_COMMENT_FUNCTION_CALL Function from field "probe" from driver structure with callbacks "lynx_pci_driver". Standart function test for correct return result. */ 1059 res_add_card_21 = add_card( var_group3, var_add_card_21_p1); 1060 ldv_check_return_value(res_add_card_21); 1061 ldv_check_return_value_probe(res_add_card_21); 1062 if(res_add_card_21) 1063 goto ldv_module_exit; 1064 ldv_s_lynx_pci_driver_pci_driver++; 1065 1066 } 1067 1068 } 1069 1070 break; 1071 case 6: { 1072 1073 /** STRUCT: struct type: pci_driver, struct name: lynx_pci_driver **/ 1074 if(ldv_s_lynx_pci_driver_pci_driver==1) { 1075 1076 /* content: static void remove_card(struct pci_dev *dev)*/ 1077 /* LDV_COMMENT_BEGIN_PREP */ 1078 #define TCODE_PHY_PACKET 0x10 1079 #define PCI_DEVICE_ID_TI_PCILYNX 0x8000 1080 #define PHY_PACKET_SIZE 12 1081 /* LDV_COMMENT_END_PREP */ 1082 /* LDV_COMMENT_FUNCTION_CALL Function from field "remove" from driver structure with callbacks "lynx_pci_driver" */ 1083 ldv_handler_precall(); 1084 remove_card( var_group3); 1085 /* LDV_COMMENT_BEGIN_PREP */ 1086 #define RCV_BUFFER_SIZE (16 * 1024) 1087 #if 0 1088 #endif 1089 /* LDV_COMMENT_END_PREP */ 1090 ldv_s_lynx_pci_driver_pci_driver=0; 1091 1092 } 1093 1094 } 1095 1096 break; 1097 case 7: { 1098 1099 /** CALLBACK SECTION request_irq **/ 1100 LDV_IN_INTERRUPT=2; 1101 1102 /* content: static irqreturn_t irq_handler(int irq, void *device)*/ 1103 /* LDV_COMMENT_BEGIN_PREP */ 1104 #define TCODE_PHY_PACKET 0x10 1105 #define PCI_DEVICE_ID_TI_PCILYNX 0x8000 1106 #define PHY_PACKET_SIZE 12 1107 /* LDV_COMMENT_END_PREP */ 1108 /* LDV_COMMENT_FUNCTION_CALL */ 1109 ldv_handler_precall(); 1110 irq_handler( var_irq_handler_19_p0, var_irq_handler_19_p1); 1111 /* LDV_COMMENT_BEGIN_PREP */ 1112 #define RCV_BUFFER_SIZE (16 * 1024) 1113 #if 0 1114 #endif 1115 /* LDV_COMMENT_END_PREP */ 1116 LDV_IN_INTERRUPT=1; 1117 1118 1119 1120 } 1121 1122 break; 1123 default: break; 1124 1125 } 1126 1127 } 1128 1129 ldv_module_exit: 1130 1131 /* LDV_COMMENT_FUNCTION_CALL Checks that all resources and locks are correctly released before the driver will be unloaded. */ 1132 ldv_final: ldv_check_final_state(); 1133 1134 /* LDV_COMMENT_END_FUNCTION_CALL_SECTION */ 1135 return; 1136 1137 } 1138 #endif 1139 1140 /* LDV_COMMENT_END_MAIN */
1 2 #include <asm/io.h> 3 #include <verifier/rcv.h> 4 #include <verifier/set.h> 5 6 7 Set LDV_IO_MEMS = 0; 8 9 10 /* LDV_COMMENT_MODEL_FUNCTION_DEFINITION(name='ldv_io_mem_remap') Create some io-memory map for specified address */ 11 void *ldv_io_mem_remap(void *addr) { 12 ldv_assert(ldv_set_not_contains(LDV_IO_MEMS, addr)); 13 14 void *ptr = ldv_undef_ptr(); 15 if (ptr != NULL) { 16 ldv_set_add(LDV_IO_MEMS, addr); 17 return ptr; 18 } 19 return NULL; 20 } 21 22 /* LDV_COMMENT_MODEL_FUNCTION_DEFINITION(name='ldv_io_mem_unmap') Delete some io-memory map for specified address */ 23 void ldv_io_mem_unmap(const volatile void *addr) { 24 ldv_assert(ldv_set_contains(LDV_IO_MEMS, addr)); 25 ldv_set_remove(LDV_IO_MEMS, addr); 26 } 27 28 /* LDV_COMMENT_MODEL_FUNCTION_DEFINITION(name='ldv_check_final_state') Check that all io-memory map are unmapped properly */ 29 void ldv_check_final_state(void) { 30 ldv_assert(ldv_set_is_empty(LDV_IO_MEMS)); 31 } 32 #line 1 "/home/ubuntu/launches/work/current--X--drivers--X--defaultlinux-4.8-rc1.tar.xz--X--152_1a--X--cpachecker/linux-4.8-rc1.tar.xz/csd_deg_dscv/12887/dscv_tempdir/dscv/ri/152_1a/drivers/firewire/nosy.c" 33 34 /* 35 * nosy - Snoop mode driver for TI PCILynx 1394 controllers 36 * Copyright (C) 2002-2007 Kristian Høgsberg 37 * 38 * This program is free software; you can redistribute it and/or modify 39 * it under the terms of the GNU General Public License as published by 40 * the Free Software Foundation; either version 2 of the License, or 41 * (at your option) any later version. 42 * 43 * This program is distributed in the hope that it will be useful, 44 * but WITHOUT ANY WARRANTY; without even the implied warranty of 45 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 46 * GNU General Public License for more details. 47 * 48 * You should have received a copy of the GNU General Public License 49 * along with this program; if not, write to the Free Software Foundation, 50 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 51 */ 52 53 #include <linux/device.h> 54 #include <linux/errno.h> 55 #include <linux/fs.h> 56 #include <linux/init.h> 57 #include <linux/interrupt.h> 58 #include <linux/io.h> 59 #include <linux/kernel.h> 60 #include <linux/kref.h> 61 #include <linux/miscdevice.h> 62 #include <linux/module.h> 63 #include <linux/mutex.h> 64 #include <linux/pci.h> 65 #include <linux/poll.h> 66 #include <linux/sched.h> /* required for linux/wait.h */ 67 #include <linux/slab.h> 68 #include <linux/spinlock.h> 69 #include <linux/time64.h> 70 #include <linux/timex.h> 71 #include <linux/uaccess.h> 72 #include <linux/wait.h> 73 #include <linux/dma-mapping.h> 74 #include <linux/atomic.h> 75 #include <asm/byteorder.h> 76 77 #include "nosy.h" 78 #include "nosy-user.h" 79 80 #define TCODE_PHY_PACKET 0x10 81 #define PCI_DEVICE_ID_TI_PCILYNX 0x8000 82 83 static char driver_name[] = KBUILD_MODNAME; 84 85 /* this is the physical layout of a PCL, its size is 128 bytes */ 86 struct pcl { 87 __le32 next; 88 __le32 async_error_next; 89 u32 user_data; 90 __le32 pcl_status; 91 __le32 remaining_transfer_count; 92 __le32 next_data_buffer; 93 struct { 94 __le32 control; 95 __le32 pointer; 96 } buffer[13]; 97 }; 98 99 struct packet { 100 unsigned int length; 101 char data[0]; 102 }; 103 104 struct packet_buffer { 105 char *data; 106 size_t capacity; 107 long total_packet_count, lost_packet_count; 108 atomic_t size; 109 struct packet *head, *tail; 110 wait_queue_head_t wait; 111 }; 112 113 struct pcilynx { 114 struct pci_dev *pci_device; 115 __iomem char *registers; 116 117 struct pcl *rcv_start_pcl, *rcv_pcl; 118 __le32 *rcv_buffer; 119 120 dma_addr_t rcv_start_pcl_bus, rcv_pcl_bus, rcv_buffer_bus; 121 122 spinlock_t client_list_lock; 123 struct list_head client_list; 124 125 struct miscdevice misc; 126 struct list_head link; 127 struct kref kref; 128 }; 129 130 static inline struct pcilynx * 131 lynx_get(struct pcilynx *lynx) 132 { 133 kref_get(&lynx->kref); 134 135 return lynx; 136 } 137 138 static void 139 lynx_release(struct kref *kref) 140 { 141 kfree(container_of(kref, struct pcilynx, kref)); 142 } 143 144 static inline void 145 lynx_put(struct pcilynx *lynx) 146 { 147 kref_put(&lynx->kref, lynx_release); 148 } 149 150 struct client { 151 struct pcilynx *lynx; 152 u32 tcode_mask; 153 struct packet_buffer buffer; 154 struct list_head link; 155 }; 156 157 static DEFINE_MUTEX(card_mutex); 158 static LIST_HEAD(card_list); 159 160 static int 161 packet_buffer_init(struct packet_buffer *buffer, size_t capacity) 162 { 163 buffer->data = kmalloc(capacity, GFP_KERNEL); 164 if (buffer->data == NULL) 165 return -ENOMEM; 166 buffer->head = (struct packet *) buffer->data; 167 buffer->tail = (struct packet *) buffer->data; 168 buffer->capacity = capacity; 169 buffer->lost_packet_count = 0; 170 atomic_set(&buffer->size, 0); 171 init_waitqueue_head(&buffer->wait); 172 173 return 0; 174 } 175 176 static void 177 packet_buffer_destroy(struct packet_buffer *buffer) 178 { 179 kfree(buffer->data); 180 } 181 182 static int 183 packet_buffer_get(struct client *client, char __user *data, size_t user_length) 184 { 185 struct packet_buffer *buffer = &client->buffer; 186 size_t length; 187 char *end; 188 189 if (wait_event_interruptible(buffer->wait, 190 atomic_read(&buffer->size) > 0) || 191 list_empty(&client->lynx->link)) 192 return -ERESTARTSYS; 193 194 if (atomic_read(&buffer->size) == 0) 195 return -ENODEV; 196 197 /* FIXME: Check length <= user_length. */ 198 199 end = buffer->data + buffer->capacity; 200 length = buffer->head->length; 201 202 if (&buffer->head->data[length] < end) { 203 if (copy_to_user(data, buffer->head->data, length)) 204 return -EFAULT; 205 buffer->head = (struct packet *) &buffer->head->data[length]; 206 } else { 207 size_t split = end - buffer->head->data; 208 209 if (copy_to_user(data, buffer->head->data, split)) 210 return -EFAULT; 211 if (copy_to_user(data + split, buffer->data, length - split)) 212 return -EFAULT; 213 buffer->head = (struct packet *) &buffer->data[length - split]; 214 } 215 216 /* 217 * Decrease buffer->size as the last thing, since this is what 218 * keeps the interrupt from overwriting the packet we are 219 * retrieving from the buffer. 220 */ 221 atomic_sub(sizeof(struct packet) + length, &buffer->size); 222 223 return length; 224 } 225 226 static void 227 packet_buffer_put(struct packet_buffer *buffer, void *data, size_t length) 228 { 229 char *end; 230 231 buffer->total_packet_count++; 232 233 if (buffer->capacity < 234 atomic_read(&buffer->size) + sizeof(struct packet) + length) { 235 buffer->lost_packet_count++; 236 return; 237 } 238 239 end = buffer->data + buffer->capacity; 240 buffer->tail->length = length; 241 242 if (&buffer->tail->data[length] < end) { 243 memcpy(buffer->tail->data, data, length); 244 buffer->tail = (struct packet *) &buffer->tail->data[length]; 245 } else { 246 size_t split = end - buffer->tail->data; 247 248 memcpy(buffer->tail->data, data, split); 249 memcpy(buffer->data, data + split, length - split); 250 buffer->tail = (struct packet *) &buffer->data[length - split]; 251 } 252 253 /* Finally, adjust buffer size and wake up userspace reader. */ 254 255 atomic_add(sizeof(struct packet) + length, &buffer->size); 256 wake_up_interruptible(&buffer->wait); 257 } 258 259 static inline void 260 reg_write(struct pcilynx *lynx, int offset, u32 data) 261 { 262 writel(data, lynx->registers + offset); 263 } 264 265 static inline u32 266 reg_read(struct pcilynx *lynx, int offset) 267 { 268 return readl(lynx->registers + offset); 269 } 270 271 static inline void 272 reg_set_bits(struct pcilynx *lynx, int offset, u32 mask) 273 { 274 reg_write(lynx, offset, (reg_read(lynx, offset) | mask)); 275 } 276 277 /* 278 * Maybe the pcl programs could be set up to just append data instead 279 * of using a whole packet. 280 */ 281 static inline void 282 run_pcl(struct pcilynx *lynx, dma_addr_t pcl_bus, 283 int dmachan) 284 { 285 reg_write(lynx, DMA0_CURRENT_PCL + dmachan * 0x20, pcl_bus); 286 reg_write(lynx, DMA0_CHAN_CTRL + dmachan * 0x20, 287 DMA_CHAN_CTRL_ENABLE | DMA_CHAN_CTRL_LINK); 288 } 289 290 static int 291 set_phy_reg(struct pcilynx *lynx, int addr, int val) 292 { 293 if (addr > 15) { 294 dev_err(&lynx->pci_device->dev, 295 "PHY register address %d out of range\n", addr); 296 return -1; 297 } 298 if (val > 0xff) { 299 dev_err(&lynx->pci_device->dev, 300 "PHY register value %d out of range\n", val); 301 return -1; 302 } 303 reg_write(lynx, LINK_PHY, LINK_PHY_WRITE | 304 LINK_PHY_ADDR(addr) | LINK_PHY_WDATA(val)); 305 306 return 0; 307 } 308 309 static int 310 nosy_open(struct inode *inode, struct file *file) 311 { 312 int minor = iminor(inode); 313 struct client *client; 314 struct pcilynx *tmp, *lynx = NULL; 315 316 mutex_lock(&card_mutex); 317 list_for_each_entry(tmp, &card_list, link) 318 if (tmp->misc.minor == minor) { 319 lynx = lynx_get(tmp); 320 break; 321 } 322 mutex_unlock(&card_mutex); 323 if (lynx == NULL) 324 return -ENODEV; 325 326 client = kmalloc(sizeof *client, GFP_KERNEL); 327 if (client == NULL) 328 goto fail; 329 330 client->tcode_mask = ~0; 331 client->lynx = lynx; 332 INIT_LIST_HEAD(&client->link); 333 334 if (packet_buffer_init(&client->buffer, 128 * 1024) < 0) 335 goto fail; 336 337 file->private_data = client; 338 339 return nonseekable_open(inode, file); 340 fail: 341 kfree(client); 342 lynx_put(lynx); 343 344 return -ENOMEM; 345 } 346 347 static int 348 nosy_release(struct inode *inode, struct file *file) 349 { 350 struct client *client = file->private_data; 351 struct pcilynx *lynx = client->lynx; 352 353 spin_lock_irq(&lynx->client_list_lock); 354 list_del_init(&client->link); 355 spin_unlock_irq(&lynx->client_list_lock); 356 357 packet_buffer_destroy(&client->buffer); 358 kfree(client); 359 lynx_put(lynx); 360 361 return 0; 362 } 363 364 static unsigned int 365 nosy_poll(struct file *file, poll_table *pt) 366 { 367 struct client *client = file->private_data; 368 unsigned int ret = 0; 369 370 poll_wait(file, &client->buffer.wait, pt); 371 372 if (atomic_read(&client->buffer.size) > 0) 373 ret = POLLIN | POLLRDNORM; 374 375 if (list_empty(&client->lynx->link)) 376 ret |= POLLHUP; 377 378 return ret; 379 } 380 381 static ssize_t 382 nosy_read(struct file *file, char __user *buffer, size_t count, loff_t *offset) 383 { 384 struct client *client = file->private_data; 385 386 return packet_buffer_get(client, buffer, count); 387 } 388 389 static long 390 nosy_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 391 { 392 struct client *client = file->private_data; 393 spinlock_t *client_list_lock = &client->lynx->client_list_lock; 394 struct nosy_stats stats; 395 396 switch (cmd) { 397 case NOSY_IOC_GET_STATS: 398 spin_lock_irq(client_list_lock); 399 stats.total_packet_count = client->buffer.total_packet_count; 400 stats.lost_packet_count = client->buffer.lost_packet_count; 401 spin_unlock_irq(client_list_lock); 402 403 if (copy_to_user((void __user *) arg, &stats, sizeof stats)) 404 return -EFAULT; 405 else 406 return 0; 407 408 case NOSY_IOC_START: 409 spin_lock_irq(client_list_lock); 410 list_add_tail(&client->link, &client->lynx->client_list); 411 spin_unlock_irq(client_list_lock); 412 413 return 0; 414 415 case NOSY_IOC_STOP: 416 spin_lock_irq(client_list_lock); 417 list_del_init(&client->link); 418 spin_unlock_irq(client_list_lock); 419 420 return 0; 421 422 case NOSY_IOC_FILTER: 423 spin_lock_irq(client_list_lock); 424 client->tcode_mask = arg; 425 spin_unlock_irq(client_list_lock); 426 427 return 0; 428 429 default: 430 return -EINVAL; 431 /* Flush buffer, configure filter. */ 432 } 433 } 434 435 static const struct file_operations nosy_ops = { 436 .owner = THIS_MODULE, 437 .read = nosy_read, 438 .unlocked_ioctl = nosy_ioctl, 439 .poll = nosy_poll, 440 .open = nosy_open, 441 .release = nosy_release, 442 }; 443 444 #define PHY_PACKET_SIZE 12 /* 1 payload, 1 inverse, 1 ack = 3 quadlets */ 445 446 static void 447 packet_irq_handler(struct pcilynx *lynx) 448 { 449 struct client *client; 450 u32 tcode_mask, tcode, timestamp; 451 size_t length; 452 struct timespec64 ts64; 453 454 /* FIXME: Also report rcv_speed. */ 455 456 length = __le32_to_cpu(lynx->rcv_pcl->pcl_status) & 0x00001fff; 457 tcode = __le32_to_cpu(lynx->rcv_buffer[1]) >> 4 & 0xf; 458 459 ktime_get_real_ts64(&ts64); 460 timestamp = ts64.tv_nsec / NSEC_PER_USEC; 461 lynx->rcv_buffer[0] = (__force __le32)timestamp; 462 463 if (length == PHY_PACKET_SIZE) 464 tcode_mask = 1 << TCODE_PHY_PACKET; 465 else 466 tcode_mask = 1 << tcode; 467 468 spin_lock(&lynx->client_list_lock); 469 470 list_for_each_entry(client, &lynx->client_list, link) 471 if (client->tcode_mask & tcode_mask) 472 packet_buffer_put(&client->buffer, 473 lynx->rcv_buffer, length + 4); 474 475 spin_unlock(&lynx->client_list_lock); 476 } 477 478 static void 479 bus_reset_irq_handler(struct pcilynx *lynx) 480 { 481 struct client *client; 482 struct timespec64 ts64; 483 u32 timestamp; 484 485 ktime_get_real_ts64(&ts64); 486 timestamp = ts64.tv_nsec / NSEC_PER_USEC; 487 488 spin_lock(&lynx->client_list_lock); 489 490 list_for_each_entry(client, &lynx->client_list, link) 491 packet_buffer_put(&client->buffer, &timestamp, 4); 492 493 spin_unlock(&lynx->client_list_lock); 494 } 495 496 static irqreturn_t 497 irq_handler(int irq, void *device) 498 { 499 struct pcilynx *lynx = device; 500 u32 pci_int_status; 501 502 pci_int_status = reg_read(lynx, PCI_INT_STATUS); 503 504 if (pci_int_status == ~0) 505 /* Card was ejected. */ 506 return IRQ_NONE; 507 508 if ((pci_int_status & PCI_INT_INT_PEND) == 0) 509 /* Not our interrupt, bail out quickly. */ 510 return IRQ_NONE; 511 512 if ((pci_int_status & PCI_INT_P1394_INT) != 0) { 513 u32 link_int_status; 514 515 link_int_status = reg_read(lynx, LINK_INT_STATUS); 516 reg_write(lynx, LINK_INT_STATUS, link_int_status); 517 518 if ((link_int_status & LINK_INT_PHY_BUSRESET) > 0) 519 bus_reset_irq_handler(lynx); 520 } 521 522 /* Clear the PCI_INT_STATUS register only after clearing the 523 * LINK_INT_STATUS register; otherwise the PCI_INT_P1394 will 524 * be set again immediately. */ 525 526 reg_write(lynx, PCI_INT_STATUS, pci_int_status); 527 528 if ((pci_int_status & PCI_INT_DMA0_HLT) > 0) { 529 packet_irq_handler(lynx); 530 run_pcl(lynx, lynx->rcv_start_pcl_bus, 0); 531 } 532 533 return IRQ_HANDLED; 534 } 535 536 static void 537 remove_card(struct pci_dev *dev) 538 { 539 struct pcilynx *lynx = pci_get_drvdata(dev); 540 struct client *client; 541 542 mutex_lock(&card_mutex); 543 list_del_init(&lynx->link); 544 misc_deregister(&lynx->misc); 545 mutex_unlock(&card_mutex); 546 547 reg_write(lynx, PCI_INT_ENABLE, 0); 548 free_irq(lynx->pci_device->irq, lynx); 549 550 spin_lock_irq(&lynx->client_list_lock); 551 list_for_each_entry(client, &lynx->client_list, link) 552 wake_up_interruptible(&client->buffer.wait); 553 spin_unlock_irq(&lynx->client_list_lock); 554 555 pci_free_consistent(lynx->pci_device, sizeof(struct pcl), 556 lynx->rcv_start_pcl, lynx->rcv_start_pcl_bus); 557 pci_free_consistent(lynx->pci_device, sizeof(struct pcl), 558 lynx->rcv_pcl, lynx->rcv_pcl_bus); 559 pci_free_consistent(lynx->pci_device, PAGE_SIZE, 560 lynx->rcv_buffer, lynx->rcv_buffer_bus); 561 562 iounmap(lynx->registers); 563 pci_disable_device(dev); 564 lynx_put(lynx); 565 } 566 567 #define RCV_BUFFER_SIZE (16 * 1024) 568 569 static int 570 add_card(struct pci_dev *dev, const struct pci_device_id *unused) 571 { 572 struct pcilynx *lynx; 573 u32 p, end; 574 int ret, i; 575 576 if (pci_set_dma_mask(dev, DMA_BIT_MASK(32))) { 577 dev_err(&dev->dev, 578 "DMA address limits not supported for PCILynx hardware\n"); 579 return -ENXIO; 580 } 581 if (pci_enable_device(dev)) { 582 dev_err(&dev->dev, "Failed to enable PCILynx hardware\n"); 583 return -ENXIO; 584 } 585 pci_set_master(dev); 586 587 lynx = kzalloc(sizeof *lynx, GFP_KERNEL); 588 if (lynx == NULL) { 589 dev_err(&dev->dev, "Failed to allocate control structure\n"); 590 ret = -ENOMEM; 591 goto fail_disable; 592 } 593 lynx->pci_device = dev; 594 pci_set_drvdata(dev, lynx); 595 596 spin_lock_init(&lynx->client_list_lock); 597 INIT_LIST_HEAD(&lynx->client_list); 598 kref_init(&lynx->kref); 599 600 lynx->registers = ioremap_nocache(pci_resource_start(dev, 0), 601 PCILYNX_MAX_REGISTER); 602 603 lynx->rcv_start_pcl = pci_alloc_consistent(lynx->pci_device, 604 sizeof(struct pcl), &lynx->rcv_start_pcl_bus); 605 lynx->rcv_pcl = pci_alloc_consistent(lynx->pci_device, 606 sizeof(struct pcl), &lynx->rcv_pcl_bus); 607 lynx->rcv_buffer = pci_alloc_consistent(lynx->pci_device, 608 RCV_BUFFER_SIZE, &lynx->rcv_buffer_bus); 609 if (lynx->rcv_start_pcl == NULL || 610 lynx->rcv_pcl == NULL || 611 lynx->rcv_buffer == NULL) { 612 dev_err(&dev->dev, "Failed to allocate receive buffer\n"); 613 ret = -ENOMEM; 614 goto fail_deallocate; 615 } 616 lynx->rcv_start_pcl->next = cpu_to_le32(lynx->rcv_pcl_bus); 617 lynx->rcv_pcl->next = cpu_to_le32(PCL_NEXT_INVALID); 618 lynx->rcv_pcl->async_error_next = cpu_to_le32(PCL_NEXT_INVALID); 619 620 lynx->rcv_pcl->buffer[0].control = 621 cpu_to_le32(PCL_CMD_RCV | PCL_BIGENDIAN | 2044); 622 lynx->rcv_pcl->buffer[0].pointer = 623 cpu_to_le32(lynx->rcv_buffer_bus + 4); 624 p = lynx->rcv_buffer_bus + 2048; 625 end = lynx->rcv_buffer_bus + RCV_BUFFER_SIZE; 626 for (i = 1; p < end; i++, p += 2048) { 627 lynx->rcv_pcl->buffer[i].control = 628 cpu_to_le32(PCL_CMD_RCV | PCL_BIGENDIAN | 2048); 629 lynx->rcv_pcl->buffer[i].pointer = cpu_to_le32(p); 630 } 631 lynx->rcv_pcl->buffer[i - 1].control |= cpu_to_le32(PCL_LAST_BUFF); 632 633 reg_set_bits(lynx, MISC_CONTROL, MISC_CONTROL_SWRESET); 634 /* Fix buggy cards with autoboot pin not tied low: */ 635 reg_write(lynx, DMA0_CHAN_CTRL, 0); 636 reg_write(lynx, DMA_GLOBAL_REGISTER, 0x00 << 24); 637 638 #if 0 639 /* now, looking for PHY register set */ 640 if ((get_phy_reg(lynx, 2) & 0xe0) == 0xe0) { 641 lynx->phyic.reg_1394a = 1; 642 PRINT(KERN_INFO, lynx->id, 643 "found 1394a conform PHY (using extended register set)"); 644 lynx->phyic.vendor = get_phy_vendorid(lynx); 645 lynx->phyic.product = get_phy_productid(lynx); 646 } else { 647 lynx->phyic.reg_1394a = 0; 648 PRINT(KERN_INFO, lynx->id, "found old 1394 PHY"); 649 } 650 #endif 651 652 /* Setup the general receive FIFO max size. */ 653 reg_write(lynx, FIFO_SIZES, 255); 654 655 reg_set_bits(lynx, PCI_INT_ENABLE, PCI_INT_DMA_ALL); 656 657 reg_write(lynx, LINK_INT_ENABLE, 658 LINK_INT_PHY_TIME_OUT | LINK_INT_PHY_REG_RCVD | 659 LINK_INT_PHY_BUSRESET | LINK_INT_IT_STUCK | 660 LINK_INT_AT_STUCK | LINK_INT_SNTRJ | 661 LINK_INT_TC_ERR | LINK_INT_GRF_OVER_FLOW | 662 LINK_INT_ITF_UNDER_FLOW | LINK_INT_ATF_UNDER_FLOW); 663 664 /* Disable the L flag in self ID packets. */ 665 set_phy_reg(lynx, 4, 0); 666 667 /* Put this baby into snoop mode */ 668 reg_set_bits(lynx, LINK_CONTROL, LINK_CONTROL_SNOOP_ENABLE); 669 670 run_pcl(lynx, lynx->rcv_start_pcl_bus, 0); 671 672 if (request_irq(dev->irq, irq_handler, IRQF_SHARED, 673 driver_name, lynx)) { 674 dev_err(&dev->dev, 675 "Failed to allocate shared interrupt %d\n", dev->irq); 676 ret = -EIO; 677 goto fail_deallocate; 678 } 679 680 lynx->misc.parent = &dev->dev; 681 lynx->misc.minor = MISC_DYNAMIC_MINOR; 682 lynx->misc.name = "nosy"; 683 lynx->misc.fops = &nosy_ops; 684 685 mutex_lock(&card_mutex); 686 ret = misc_register(&lynx->misc); 687 if (ret) { 688 dev_err(&dev->dev, "Failed to register misc char device\n"); 689 mutex_unlock(&card_mutex); 690 goto fail_free_irq; 691 } 692 list_add_tail(&lynx->link, &card_list); 693 mutex_unlock(&card_mutex); 694 695 dev_info(&dev->dev, 696 "Initialized PCILynx IEEE1394 card, irq=%d\n", dev->irq); 697 698 return 0; 699 700 fail_free_irq: 701 reg_write(lynx, PCI_INT_ENABLE, 0); 702 free_irq(lynx->pci_device->irq, lynx); 703 704 fail_deallocate: 705 if (lynx->rcv_start_pcl) 706 pci_free_consistent(lynx->pci_device, sizeof(struct pcl), 707 lynx->rcv_start_pcl, lynx->rcv_start_pcl_bus); 708 if (lynx->rcv_pcl) 709 pci_free_consistent(lynx->pci_device, sizeof(struct pcl), 710 lynx->rcv_pcl, lynx->rcv_pcl_bus); 711 if (lynx->rcv_buffer) 712 pci_free_consistent(lynx->pci_device, PAGE_SIZE, 713 lynx->rcv_buffer, lynx->rcv_buffer_bus); 714 iounmap(lynx->registers); 715 kfree(lynx); 716 717 fail_disable: 718 pci_disable_device(dev); 719 720 return ret; 721 } 722 723 static struct pci_device_id pci_table[] = { 724 { 725 .vendor = PCI_VENDOR_ID_TI, 726 .device = PCI_DEVICE_ID_TI_PCILYNX, 727 .subvendor = PCI_ANY_ID, 728 .subdevice = PCI_ANY_ID, 729 }, 730 { } /* Terminating entry */ 731 }; 732 733 MODULE_DEVICE_TABLE(pci, pci_table); 734 735 static struct pci_driver lynx_pci_driver = { 736 .name = driver_name, 737 .id_table = pci_table, 738 .probe = add_card, 739 .remove = remove_card, 740 }; 741 742 module_pci_driver(lynx_pci_driver); 743 744 MODULE_AUTHOR("Kristian Hoegsberg"); 745 MODULE_DESCRIPTION("Snoop mode driver for TI pcilynx 1394 controllers"); 746 MODULE_LICENSE("GPL"); 747 748 749 750 751 752 /* LDV_COMMENT_BEGIN_MAIN */ 753 #ifdef LDV_MAIN0_sequence_infinite_withcheck_stateful 754 755 /*###########################################################################*/ 756 757 /*############## Driver Environment Generator 0.2 output ####################*/ 758 759 /*###########################################################################*/ 760 761 762 763 /* LDV_COMMENT_FUNCTION_DECLARE_LDV Special function for LDV verifier. Test if all kernel resources are correctly released by driver before driver will be unloaded. */ 764 void ldv_check_final_state(void); 765 766 /* LDV_COMMENT_FUNCTION_DECLARE_LDV Special function for LDV verifier. Test correct return result. */ 767 void ldv_check_return_value(int res); 768 769 /* LDV_COMMENT_FUNCTION_DECLARE_LDV Special function for LDV verifier. Test correct return result of probe() function. */ 770 void ldv_check_return_value_probe(int res); 771 772 /* LDV_COMMENT_FUNCTION_DECLARE_LDV Special function for LDV verifier. Initializes the model. */ 773 void ldv_initialize(void); 774 775 /* LDV_COMMENT_FUNCTION_DECLARE_LDV Special function for LDV verifier. Reinitializes the model between distinct model function calls. */ 776 void ldv_handler_precall(void); 777 778 /* LDV_COMMENT_FUNCTION_DECLARE_LDV Special function for LDV verifier. Returns arbitrary interger value. */ 779 int nondet_int(void); 780 781 /* LDV_COMMENT_VAR_DECLARE_LDV Special variable for LDV verifier. */ 782 int LDV_IN_INTERRUPT; 783 784 /* LDV_COMMENT_FUNCTION_MAIN Main function for LDV verifier. */ 785 void ldv_main0_sequence_infinite_withcheck_stateful(void) { 786 787 788 789 /* LDV_COMMENT_BEGIN_VARIABLE_DECLARATION_PART */ 790 /*============================= VARIABLE DECLARATION PART =============================*/ 791 /** STRUCT: struct type: file_operations, struct name: nosy_ops **/ 792 /* content: static ssize_t nosy_read(struct file *file, char __user *buffer, size_t count, loff_t *offset)*/ 793 /* LDV_COMMENT_BEGIN_PREP */ 794 #define TCODE_PHY_PACKET 0x10 795 #define PCI_DEVICE_ID_TI_PCILYNX 0x8000 796 /* LDV_COMMENT_END_PREP */ 797 /* LDV_COMMENT_VAR_DECLARE Variable declaration for function "nosy_read" */ 798 struct file * var_group1; 799 /* LDV_COMMENT_VAR_DECLARE Variable declaration for function "nosy_read" */ 800 char __user * var_nosy_read_15_p1; 801 /* LDV_COMMENT_VAR_DECLARE Variable declaration for function "nosy_read" */ 802 size_t var_nosy_read_15_p2; 803 /* LDV_COMMENT_VAR_DECLARE Variable declaration for function "nosy_read" */ 804 loff_t * var_nosy_read_15_p3; 805 /* LDV_COMMENT_VAR_DECLARE Variable declaration for test return result from function call "nosy_read" */ 806 static ssize_t res_nosy_read_15; 807 /* LDV_COMMENT_BEGIN_PREP */ 808 #define PHY_PACKET_SIZE 12 809 #define RCV_BUFFER_SIZE (16 * 1024) 810 #if 0 811 #endif 812 /* LDV_COMMENT_END_PREP */ 813 /* content: static long nosy_ioctl(struct file *file, unsigned int cmd, unsigned long arg)*/ 814 /* LDV_COMMENT_BEGIN_PREP */ 815 #define TCODE_PHY_PACKET 0x10 816 #define PCI_DEVICE_ID_TI_PCILYNX 0x8000 817 /* LDV_COMMENT_END_PREP */ 818 /* LDV_COMMENT_VAR_DECLARE Variable declaration for function "nosy_ioctl" */ 819 unsigned int var_nosy_ioctl_16_p1; 820 /* LDV_COMMENT_VAR_DECLARE Variable declaration for function "nosy_ioctl" */ 821 unsigned long var_nosy_ioctl_16_p2; 822 /* LDV_COMMENT_BEGIN_PREP */ 823 #define PHY_PACKET_SIZE 12 824 #define RCV_BUFFER_SIZE (16 * 1024) 825 #if 0 826 #endif 827 /* LDV_COMMENT_END_PREP */ 828 /* content: static unsigned int nosy_poll(struct file *file, poll_table *pt)*/ 829 /* LDV_COMMENT_BEGIN_PREP */ 830 #define TCODE_PHY_PACKET 0x10 831 #define PCI_DEVICE_ID_TI_PCILYNX 0x8000 832 /* LDV_COMMENT_END_PREP */ 833 /* LDV_COMMENT_VAR_DECLARE Variable declaration for function "nosy_poll" */ 834 poll_table * var_nosy_poll_14_p1; 835 /* LDV_COMMENT_BEGIN_PREP */ 836 #define PHY_PACKET_SIZE 12 837 #define RCV_BUFFER_SIZE (16 * 1024) 838 #if 0 839 #endif 840 /* LDV_COMMENT_END_PREP */ 841 /* content: static int nosy_open(struct inode *inode, struct file *file)*/ 842 /* LDV_COMMENT_BEGIN_PREP */ 843 #define TCODE_PHY_PACKET 0x10 844 #define PCI_DEVICE_ID_TI_PCILYNX 0x8000 845 /* LDV_COMMENT_END_PREP */ 846 /* LDV_COMMENT_VAR_DECLARE Variable declaration for function "nosy_open" */ 847 struct inode * var_group2; 848 /* LDV_COMMENT_VAR_DECLARE Variable declaration for test return result from function call "nosy_open" */ 849 static int res_nosy_open_12; 850 /* LDV_COMMENT_BEGIN_PREP */ 851 #define PHY_PACKET_SIZE 12 852 #define RCV_BUFFER_SIZE (16 * 1024) 853 #if 0 854 #endif 855 /* LDV_COMMENT_END_PREP */ 856 /* content: static int nosy_release(struct inode *inode, struct file *file)*/ 857 /* LDV_COMMENT_BEGIN_PREP */ 858 #define TCODE_PHY_PACKET 0x10 859 #define PCI_DEVICE_ID_TI_PCILYNX 0x8000 860 /* LDV_COMMENT_END_PREP */ 861 /* LDV_COMMENT_BEGIN_PREP */ 862 #define PHY_PACKET_SIZE 12 863 #define RCV_BUFFER_SIZE (16 * 1024) 864 #if 0 865 #endif 866 /* LDV_COMMENT_END_PREP */ 867 868 /** STRUCT: struct type: pci_driver, struct name: lynx_pci_driver **/ 869 /* content: static int add_card(struct pci_dev *dev, const struct pci_device_id *unused)*/ 870 /* LDV_COMMENT_BEGIN_PREP */ 871 #define TCODE_PHY_PACKET 0x10 872 #define PCI_DEVICE_ID_TI_PCILYNX 0x8000 873 #define PHY_PACKET_SIZE 12 874 #define RCV_BUFFER_SIZE (16 * 1024) 875 /* LDV_COMMENT_END_PREP */ 876 /* LDV_COMMENT_VAR_DECLARE Variable declaration for function "add_card" */ 877 struct pci_dev * var_group3; 878 /* LDV_COMMENT_VAR_DECLARE Variable declaration for function "add_card" */ 879 const struct pci_device_id * var_add_card_21_p1; 880 /* LDV_COMMENT_VAR_DECLARE Variable declaration for test return result from function call "add_card" */ 881 static int res_add_card_21; 882 /* content: static void remove_card(struct pci_dev *dev)*/ 883 /* LDV_COMMENT_BEGIN_PREP */ 884 #define TCODE_PHY_PACKET 0x10 885 #define PCI_DEVICE_ID_TI_PCILYNX 0x8000 886 #define PHY_PACKET_SIZE 12 887 /* LDV_COMMENT_END_PREP */ 888 /* LDV_COMMENT_BEGIN_PREP */ 889 #define RCV_BUFFER_SIZE (16 * 1024) 890 #if 0 891 #endif 892 /* LDV_COMMENT_END_PREP */ 893 894 /** CALLBACK SECTION request_irq **/ 895 /* content: static irqreturn_t irq_handler(int irq, void *device)*/ 896 /* LDV_COMMENT_BEGIN_PREP */ 897 #define TCODE_PHY_PACKET 0x10 898 #define PCI_DEVICE_ID_TI_PCILYNX 0x8000 899 #define PHY_PACKET_SIZE 12 900 /* LDV_COMMENT_END_PREP */ 901 /* LDV_COMMENT_VAR_DECLARE Variable declaration for function "irq_handler" */ 902 int var_irq_handler_19_p0; 903 /* LDV_COMMENT_VAR_DECLARE Variable declaration for function "irq_handler" */ 904 void * var_irq_handler_19_p1; 905 /* LDV_COMMENT_BEGIN_PREP */ 906 #define RCV_BUFFER_SIZE (16 * 1024) 907 #if 0 908 #endif 909 /* LDV_COMMENT_END_PREP */ 910 911 912 913 914 /* LDV_COMMENT_END_VARIABLE_DECLARATION_PART */ 915 /* LDV_COMMENT_BEGIN_VARIABLE_INITIALIZING_PART */ 916 /*============================= VARIABLE INITIALIZING PART =============================*/ 917 LDV_IN_INTERRUPT=1; 918 919 920 921 922 /* LDV_COMMENT_END_VARIABLE_INITIALIZING_PART */ 923 /* LDV_COMMENT_BEGIN_FUNCTION_CALL_SECTION */ 924 /*============================= FUNCTION CALL SECTION =============================*/ 925 /* LDV_COMMENT_FUNCTION_CALL Initialize LDV model. */ 926 ldv_initialize(); 927 int ldv_s_nosy_ops_file_operations = 0; 928 929 930 int ldv_s_lynx_pci_driver_pci_driver = 0; 931 932 933 934 935 while( nondet_int() 936 || !(ldv_s_nosy_ops_file_operations == 0) 937 || !(ldv_s_lynx_pci_driver_pci_driver == 0) 938 ) { 939 940 switch(nondet_int()) { 941 942 case 0: { 943 944 /** STRUCT: struct type: file_operations, struct name: nosy_ops **/ 945 if(ldv_s_nosy_ops_file_operations==0) { 946 947 /* content: static int nosy_open(struct inode *inode, struct file *file)*/ 948 /* LDV_COMMENT_BEGIN_PREP */ 949 #define TCODE_PHY_PACKET 0x10 950 #define PCI_DEVICE_ID_TI_PCILYNX 0x8000 951 /* LDV_COMMENT_END_PREP */ 952 /* LDV_COMMENT_FUNCTION_CALL Function from field "open" from driver structure with callbacks "nosy_ops". Standart function test for correct return result. */ 953 ldv_handler_precall(); 954 res_nosy_open_12 = nosy_open( var_group2, var_group1); 955 ldv_check_return_value(res_nosy_open_12); 956 if(res_nosy_open_12) 957 goto ldv_module_exit; 958 /* LDV_COMMENT_BEGIN_PREP */ 959 #define PHY_PACKET_SIZE 12 960 #define RCV_BUFFER_SIZE (16 * 1024) 961 #if 0 962 #endif 963 /* LDV_COMMENT_END_PREP */ 964 ldv_s_nosy_ops_file_operations++; 965 966 } 967 968 } 969 970 break; 971 case 1: { 972 973 /** STRUCT: struct type: file_operations, struct name: nosy_ops **/ 974 if(ldv_s_nosy_ops_file_operations==1) { 975 976 /* content: static ssize_t nosy_read(struct file *file, char __user *buffer, size_t count, loff_t *offset)*/ 977 /* LDV_COMMENT_BEGIN_PREP */ 978 #define TCODE_PHY_PACKET 0x10 979 #define PCI_DEVICE_ID_TI_PCILYNX 0x8000 980 /* LDV_COMMENT_END_PREP */ 981 /* LDV_COMMENT_FUNCTION_CALL Function from field "read" from driver structure with callbacks "nosy_ops". Standart function test for correct return result. */ 982 ldv_handler_precall(); 983 res_nosy_read_15 = nosy_read( var_group1, var_nosy_read_15_p1, var_nosy_read_15_p2, var_nosy_read_15_p3); 984 ldv_check_return_value(res_nosy_read_15); 985 if(res_nosy_read_15 < 0) 986 goto ldv_module_exit; 987 /* LDV_COMMENT_BEGIN_PREP */ 988 #define PHY_PACKET_SIZE 12 989 #define RCV_BUFFER_SIZE (16 * 1024) 990 #if 0 991 #endif 992 /* LDV_COMMENT_END_PREP */ 993 ldv_s_nosy_ops_file_operations++; 994 995 } 996 997 } 998 999 break; 1000 case 2: { 1001 1002 /** STRUCT: struct type: file_operations, struct name: nosy_ops **/ 1003 if(ldv_s_nosy_ops_file_operations==2) { 1004 1005 /* content: static int nosy_release(struct inode *inode, struct file *file)*/ 1006 /* LDV_COMMENT_BEGIN_PREP */ 1007 #define TCODE_PHY_PACKET 0x10 1008 #define PCI_DEVICE_ID_TI_PCILYNX 0x8000 1009 /* LDV_COMMENT_END_PREP */ 1010 /* LDV_COMMENT_FUNCTION_CALL Function from field "release" from driver structure with callbacks "nosy_ops" */ 1011 ldv_handler_precall(); 1012 nosy_release( var_group2, var_group1); 1013 /* LDV_COMMENT_BEGIN_PREP */ 1014 #define PHY_PACKET_SIZE 12 1015 #define RCV_BUFFER_SIZE (16 * 1024) 1016 #if 0 1017 #endif 1018 /* LDV_COMMENT_END_PREP */ 1019 ldv_s_nosy_ops_file_operations=0; 1020 1021 } 1022 1023 } 1024 1025 break; 1026 case 3: { 1027 1028 /** STRUCT: struct type: file_operations, struct name: nosy_ops **/ 1029 1030 1031 /* content: static long nosy_ioctl(struct file *file, unsigned int cmd, unsigned long arg)*/ 1032 /* LDV_COMMENT_BEGIN_PREP */ 1033 #define TCODE_PHY_PACKET 0x10 1034 #define PCI_DEVICE_ID_TI_PCILYNX 0x8000 1035 /* LDV_COMMENT_END_PREP */ 1036 /* LDV_COMMENT_FUNCTION_CALL Function from field "unlocked_ioctl" from driver structure with callbacks "nosy_ops" */ 1037 ldv_handler_precall(); 1038 nosy_ioctl( var_group1, var_nosy_ioctl_16_p1, var_nosy_ioctl_16_p2); 1039 /* LDV_COMMENT_BEGIN_PREP */ 1040 #define PHY_PACKET_SIZE 12 1041 #define RCV_BUFFER_SIZE (16 * 1024) 1042 #if 0 1043 #endif 1044 /* LDV_COMMENT_END_PREP */ 1045 1046 1047 1048 1049 } 1050 1051 break; 1052 case 4: { 1053 1054 /** STRUCT: struct type: file_operations, struct name: nosy_ops **/ 1055 1056 1057 /* content: static unsigned int nosy_poll(struct file *file, poll_table *pt)*/ 1058 /* LDV_COMMENT_BEGIN_PREP */ 1059 #define TCODE_PHY_PACKET 0x10 1060 #define PCI_DEVICE_ID_TI_PCILYNX 0x8000 1061 /* LDV_COMMENT_END_PREP */ 1062 /* LDV_COMMENT_FUNCTION_CALL Function from field "poll" from driver structure with callbacks "nosy_ops" */ 1063 ldv_handler_precall(); 1064 nosy_poll( var_group1, var_nosy_poll_14_p1); 1065 /* LDV_COMMENT_BEGIN_PREP */ 1066 #define PHY_PACKET_SIZE 12 1067 #define RCV_BUFFER_SIZE (16 * 1024) 1068 #if 0 1069 #endif 1070 /* LDV_COMMENT_END_PREP */ 1071 1072 1073 1074 1075 } 1076 1077 break; 1078 case 5: { 1079 1080 /** STRUCT: struct type: pci_driver, struct name: lynx_pci_driver **/ 1081 if(ldv_s_lynx_pci_driver_pci_driver==0) { 1082 1083 /* content: static int add_card(struct pci_dev *dev, const struct pci_device_id *unused)*/ 1084 /* LDV_COMMENT_BEGIN_PREP */ 1085 #define TCODE_PHY_PACKET 0x10 1086 #define PCI_DEVICE_ID_TI_PCILYNX 0x8000 1087 #define PHY_PACKET_SIZE 12 1088 #define RCV_BUFFER_SIZE (16 * 1024) 1089 /* LDV_COMMENT_END_PREP */ 1090 /* LDV_COMMENT_FUNCTION_CALL Function from field "probe" from driver structure with callbacks "lynx_pci_driver". Standart function test for correct return result. */ 1091 res_add_card_21 = add_card( var_group3, var_add_card_21_p1); 1092 ldv_check_return_value(res_add_card_21); 1093 ldv_check_return_value_probe(res_add_card_21); 1094 if(res_add_card_21) 1095 goto ldv_module_exit; 1096 ldv_s_lynx_pci_driver_pci_driver++; 1097 1098 } 1099 1100 } 1101 1102 break; 1103 case 6: { 1104 1105 /** STRUCT: struct type: pci_driver, struct name: lynx_pci_driver **/ 1106 if(ldv_s_lynx_pci_driver_pci_driver==1) { 1107 1108 /* content: static void remove_card(struct pci_dev *dev)*/ 1109 /* LDV_COMMENT_BEGIN_PREP */ 1110 #define TCODE_PHY_PACKET 0x10 1111 #define PCI_DEVICE_ID_TI_PCILYNX 0x8000 1112 #define PHY_PACKET_SIZE 12 1113 /* LDV_COMMENT_END_PREP */ 1114 /* LDV_COMMENT_FUNCTION_CALL Function from field "remove" from driver structure with callbacks "lynx_pci_driver" */ 1115 ldv_handler_precall(); 1116 remove_card( var_group3); 1117 /* LDV_COMMENT_BEGIN_PREP */ 1118 #define RCV_BUFFER_SIZE (16 * 1024) 1119 #if 0 1120 #endif 1121 /* LDV_COMMENT_END_PREP */ 1122 ldv_s_lynx_pci_driver_pci_driver=0; 1123 1124 } 1125 1126 } 1127 1128 break; 1129 case 7: { 1130 1131 /** CALLBACK SECTION request_irq **/ 1132 LDV_IN_INTERRUPT=2; 1133 1134 /* content: static irqreturn_t irq_handler(int irq, void *device)*/ 1135 /* LDV_COMMENT_BEGIN_PREP */ 1136 #define TCODE_PHY_PACKET 0x10 1137 #define PCI_DEVICE_ID_TI_PCILYNX 0x8000 1138 #define PHY_PACKET_SIZE 12 1139 /* LDV_COMMENT_END_PREP */ 1140 /* LDV_COMMENT_FUNCTION_CALL */ 1141 ldv_handler_precall(); 1142 irq_handler( var_irq_handler_19_p0, var_irq_handler_19_p1); 1143 /* LDV_COMMENT_BEGIN_PREP */ 1144 #define RCV_BUFFER_SIZE (16 * 1024) 1145 #if 0 1146 #endif 1147 /* LDV_COMMENT_END_PREP */ 1148 LDV_IN_INTERRUPT=1; 1149 1150 1151 1152 } 1153 1154 break; 1155 default: break; 1156 1157 } 1158 1159 } 1160 1161 ldv_module_exit: 1162 1163 /* LDV_COMMENT_FUNCTION_CALL Checks that all resources and locks are correctly released before the driver will be unloaded. */ 1164 ldv_final: ldv_check_final_state(); 1165 1166 /* LDV_COMMENT_END_FUNCTION_CALL_SECTION */ 1167 return; 1168 1169 } 1170 #endif 1171 1172 /* LDV_COMMENT_END_MAIN */ 1173 1174 #line 32 "/home/ubuntu/launches/work/current--X--drivers--X--defaultlinux-4.8-rc1.tar.xz--X--152_1a--X--cpachecker/linux-4.8-rc1.tar.xz/csd_deg_dscv/12887/dscv_tempdir/dscv/ri/152_1a/drivers/firewire/nosy.o.c.prepared"
1 #ifndef _LDV_RCV_H_ 2 #define _LDV_RCV_H_ 3 4 /* If expr evaluates to zero, ldv_assert() causes a program to reach the error 5 label like the standard assert(). */ 6 #define ldv_assert(expr) ((expr) ? 0 : ldv_error()) 7 8 /* The error label wrapper. It is used because of some static verifiers (like 9 BLAST) don't accept multiple error labels through a program. */ 10 static inline void ldv_error(void) 11 { 12 LDV_ERROR: goto LDV_ERROR; 13 } 14 15 /* If expr evaluates to zero, ldv_assume() causes an infinite loop that is 16 avoided by verifiers. */ 17 #define ldv_assume(expr) ((expr) ? 0 : ldv_stop()) 18 19 /* Infinite loop, that causes verifiers to skip such paths. */ 20 static inline void ldv_stop(void) { 21 LDV_STOP: goto LDV_STOP; 22 } 23 24 /* Special nondeterministic functions. */ 25 int ldv_undef_int(void); 26 void *ldv_undef_ptr(void); 27 unsigned long ldv_undef_ulong(void); 28 long ldv_undef_long(void); 29 /* Return nondeterministic negative integer number. */ 30 static inline int ldv_undef_int_negative(void) 31 { 32 int ret = ldv_undef_int(); 33 34 ldv_assume(ret < 0); 35 36 return ret; 37 } 38 /* Return nondeterministic nonpositive integer number. */ 39 static inline int ldv_undef_int_nonpositive(void) 40 { 41 int ret = ldv_undef_int(); 42 43 ldv_assume(ret <= 0); 44 45 return ret; 46 } 47 48 /* Add explicit model for __builin_expect GCC function. Without the model a 49 return value will be treated as nondetermined by verifiers. */ 50 static inline long __builtin_expect(long exp, long c) 51 { 52 return exp; 53 } 54 55 /* This function causes the program to exit abnormally. GCC implements this 56 function by using a target-dependent mechanism (such as intentionally executing 57 an illegal instruction) or by calling abort. The mechanism used may vary from 58 release to release so you should not rely on any particular implementation. 59 http://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html */ 60 static inline void __builtin_trap(void) 61 { 62 ldv_assert(0); 63 } 64 65 /* The constant is for simulating an error of ldv_undef_ptr() function. */ 66 #define LDV_PTR_MAX 2012 67 68 #endif /* _LDV_RCV_H_ */
1 #ifndef __LINUX_COMPILER_H 2 #define __LINUX_COMPILER_H 3 4 #ifndef __ASSEMBLY__ 5 6 #ifdef __CHECKER__ 7 # define __user __attribute__((noderef, address_space(1))) 8 # define __kernel __attribute__((address_space(0))) 9 # define __safe __attribute__((safe)) 10 # define __force __attribute__((force)) 11 # define __nocast __attribute__((nocast)) 12 # define __iomem __attribute__((noderef, address_space(2))) 13 # define __must_hold(x) __attribute__((context(x,1,1))) 14 # define __acquires(x) __attribute__((context(x,0,1))) 15 # define __releases(x) __attribute__((context(x,1,0))) 16 # define __acquire(x) __context__(x,1) 17 # define __release(x) __context__(x,-1) 18 # define __cond_lock(x,c) ((c) ? ({ __acquire(x); 1; }) : 0) 19 # define __percpu __attribute__((noderef, address_space(3))) 20 #ifdef CONFIG_SPARSE_RCU_POINTER 21 # define __rcu __attribute__((noderef, address_space(4))) 22 #else /* CONFIG_SPARSE_RCU_POINTER */ 23 # define __rcu 24 #endif /* CONFIG_SPARSE_RCU_POINTER */ 25 # define __private __attribute__((noderef)) 26 extern void __chk_user_ptr(const volatile void __user *); 27 extern void __chk_io_ptr(const volatile void __iomem *); 28 # define ACCESS_PRIVATE(p, member) (*((typeof((p)->member) __force *) &(p)->member)) 29 #else /* __CHECKER__ */ 30 # define __user 31 # define __kernel 32 # define __safe 33 # define __force 34 # define __nocast 35 # define __iomem 36 # define __chk_user_ptr(x) (void)0 37 # define __chk_io_ptr(x) (void)0 38 # define __builtin_warning(x, y...) (1) 39 # define __must_hold(x) 40 # define __acquires(x) 41 # define __releases(x) 42 # define __acquire(x) (void)0 43 # define __release(x) (void)0 44 # define __cond_lock(x,c) (c) 45 # define __percpu 46 # define __rcu 47 # define __private 48 # define ACCESS_PRIVATE(p, member) ((p)->member) 49 #endif /* __CHECKER__ */ 50 51 /* Indirect macros required for expanded argument pasting, eg. __LINE__. */ 52 #define ___PASTE(a,b) a##b 53 #define __PASTE(a,b) ___PASTE(a,b) 54 55 #ifdef __KERNEL__ 56 57 #ifdef __GNUC__ 58 #include <linux/compiler-gcc.h> 59 #endif 60 61 #if defined(CC_USING_HOTPATCH) && !defined(__CHECKER__) 62 #define notrace __attribute__((hotpatch(0,0))) 63 #else 64 #define notrace __attribute__((no_instrument_function)) 65 #endif 66 67 /* Intel compiler defines __GNUC__. So we will overwrite implementations 68 * coming from above header files here 69 */ 70 #ifdef __INTEL_COMPILER 71 # include <linux/compiler-intel.h> 72 #endif 73 74 /* Clang compiler defines __GNUC__. So we will overwrite implementations 75 * coming from above header files here 76 */ 77 #ifdef __clang__ 78 #include <linux/compiler-clang.h> 79 #endif 80 81 /* 82 * Generic compiler-dependent macros required for kernel 83 * build go below this comment. Actual compiler/compiler version 84 * specific implementations come from the above header files 85 */ 86 87 struct ftrace_branch_data { 88 const char *func; 89 const char *file; 90 unsigned line; 91 union { 92 struct { 93 unsigned long correct; 94 unsigned long incorrect; 95 }; 96 struct { 97 unsigned long miss; 98 unsigned long hit; 99 }; 100 unsigned long miss_hit[2]; 101 }; 102 }; 103 104 /* 105 * Note: DISABLE_BRANCH_PROFILING can be used by special lowlevel code 106 * to disable branch tracing on a per file basis. 107 */ 108 #if defined(CONFIG_TRACE_BRANCH_PROFILING) \ 109 && !defined(DISABLE_BRANCH_PROFILING) && !defined(__CHECKER__) 110 void ftrace_likely_update(struct ftrace_branch_data *f, int val, int expect); 111 112 #define likely_notrace(x) __builtin_expect(!!(x), 1) 113 #define unlikely_notrace(x) __builtin_expect(!!(x), 0) 114 115 #define __branch_check__(x, expect) ({ \ 116 int ______r; \ 117 static struct ftrace_branch_data \ 118 __attribute__((__aligned__(4))) \ 119 __attribute__((section("_ftrace_annotated_branch"))) \ 120 ______f = { \ 121 .func = __func__, \ 122 .file = __FILE__, \ 123 .line = __LINE__, \ 124 }; \ 125 ______r = likely_notrace(x); \ 126 ftrace_likely_update(&______f, ______r, expect); \ 127 ______r; \ 128 }) 129 130 /* 131 * Using __builtin_constant_p(x) to ignore cases where the return 132 * value is always the same. This idea is taken from a similar patch 133 * written by Daniel Walker. 134 */ 135 # ifndef likely 136 # define likely(x) (__builtin_constant_p(x) ? !!(x) : __branch_check__(x, 1)) 137 # endif 138 # ifndef unlikely 139 # define unlikely(x) (__builtin_constant_p(x) ? !!(x) : __branch_check__(x, 0)) 140 # endif 141 142 #ifdef CONFIG_PROFILE_ALL_BRANCHES 143 /* 144 * "Define 'is'", Bill Clinton 145 * "Define 'if'", Steven Rostedt 146 */ 147 #define if(cond, ...) __trace_if( (cond , ## __VA_ARGS__) ) 148 #define __trace_if(cond) \ 149 if (__builtin_constant_p(!!(cond)) ? !!(cond) : \ 150 ({ \ 151 int ______r; \ 152 static struct ftrace_branch_data \ 153 __attribute__((__aligned__(4))) \ 154 __attribute__((section("_ftrace_branch"))) \ 155 ______f = { \ 156 .func = __func__, \ 157 .file = __FILE__, \ 158 .line = __LINE__, \ 159 }; \ 160 ______r = !!(cond); \ 161 ______f.miss_hit[______r]++; \ 162 ______r; \ 163 })) 164 #endif /* CONFIG_PROFILE_ALL_BRANCHES */ 165 166 #else 167 # define likely(x) __builtin_expect(!!(x), 1) 168 # define unlikely(x) __builtin_expect(!!(x), 0) 169 #endif 170 171 /* Optimization barrier */ 172 #ifndef barrier 173 # define barrier() __memory_barrier() 174 #endif 175 176 #ifndef barrier_data 177 # define barrier_data(ptr) barrier() 178 #endif 179 180 /* Unreachable code */ 181 #ifndef unreachable 182 # define unreachable() do { } while (1) 183 #endif 184 185 #ifndef RELOC_HIDE 186 # define RELOC_HIDE(ptr, off) \ 187 ({ unsigned long __ptr; \ 188 __ptr = (unsigned long) (ptr); \ 189 (typeof(ptr)) (__ptr + (off)); }) 190 #endif 191 192 #ifndef OPTIMIZER_HIDE_VAR 193 #define OPTIMIZER_HIDE_VAR(var) barrier() 194 #endif 195 196 /* Not-quite-unique ID. */ 197 #ifndef __UNIQUE_ID 198 # define __UNIQUE_ID(prefix) __PASTE(__PASTE(__UNIQUE_ID_, prefix), __LINE__) 199 #endif 200 201 #include <uapi/linux/types.h> 202 203 #define __READ_ONCE_SIZE \ 204 ({ \ 205 switch (size) { \ 206 case 1: *(__u8 *)res = *(volatile __u8 *)p; break; \ 207 case 2: *(__u16 *)res = *(volatile __u16 *)p; break; \ 208 case 4: *(__u32 *)res = *(volatile __u32 *)p; break; \ 209 case 8: *(__u64 *)res = *(volatile __u64 *)p; break; \ 210 default: \ 211 barrier(); \ 212 __builtin_memcpy((void *)res, (const void *)p, size); \ 213 barrier(); \ 214 } \ 215 }) 216 217 static __always_inline 218 void __read_once_size(const volatile void *p, void *res, int size) 219 { 220 __READ_ONCE_SIZE; 221 } 222 223 #ifdef CONFIG_KASAN 224 /* 225 * This function is not 'inline' because __no_sanitize_address confilcts 226 * with inlining. Attempt to inline it may cause a build failure. 227 * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=67368 228 * '__maybe_unused' allows us to avoid defined-but-not-used warnings. 229 */ 230 static __no_sanitize_address __maybe_unused 231 void __read_once_size_nocheck(const volatile void *p, void *res, int size) 232 { 233 __READ_ONCE_SIZE; 234 } 235 #else 236 static __always_inline 237 void __read_once_size_nocheck(const volatile void *p, void *res, int size) 238 { 239 __READ_ONCE_SIZE; 240 } 241 #endif 242 243 static __always_inline void __write_once_size(volatile void *p, void *res, int size) 244 { 245 switch (size) { 246 case 1: *(volatile __u8 *)p = *(__u8 *)res; break; 247 case 2: *(volatile __u16 *)p = *(__u16 *)res; break; 248 case 4: *(volatile __u32 *)p = *(__u32 *)res; break; 249 case 8: *(volatile __u64 *)p = *(__u64 *)res; break; 250 default: 251 barrier(); 252 __builtin_memcpy((void *)p, (const void *)res, size); 253 barrier(); 254 } 255 } 256 257 /* 258 * Prevent the compiler from merging or refetching reads or writes. The 259 * compiler is also forbidden from reordering successive instances of 260 * READ_ONCE, WRITE_ONCE and ACCESS_ONCE (see below), but only when the 261 * compiler is aware of some particular ordering. One way to make the 262 * compiler aware of ordering is to put the two invocations of READ_ONCE, 263 * WRITE_ONCE or ACCESS_ONCE() in different C statements. 264 * 265 * In contrast to ACCESS_ONCE these two macros will also work on aggregate 266 * data types like structs or unions. If the size of the accessed data 267 * type exceeds the word size of the machine (e.g., 32 bits or 64 bits) 268 * READ_ONCE() and WRITE_ONCE() will fall back to memcpy(). There's at 269 * least two memcpy()s: one for the __builtin_memcpy() and then one for 270 * the macro doing the copy of variable - '__u' allocated on the stack. 271 * 272 * Their two major use cases are: (1) Mediating communication between 273 * process-level code and irq/NMI handlers, all running on the same CPU, 274 * and (2) Ensuring that the compiler does not fold, spindle, or otherwise 275 * mutilate accesses that either do not require ordering or that interact 276 * with an explicit memory barrier or atomic instruction that provides the 277 * required ordering. 278 */ 279 280 #define __READ_ONCE(x, check) \ 281 ({ \ 282 union { typeof(x) __val; char __c[1]; } __u; \ 283 if (check) \ 284 __read_once_size(&(x), __u.__c, sizeof(x)); \ 285 else \ 286 __read_once_size_nocheck(&(x), __u.__c, sizeof(x)); \ 287 __u.__val; \ 288 }) 289 #define READ_ONCE(x) __READ_ONCE(x, 1) 290 291 /* 292 * Use READ_ONCE_NOCHECK() instead of READ_ONCE() if you need 293 * to hide memory access from KASAN. 294 */ 295 #define READ_ONCE_NOCHECK(x) __READ_ONCE(x, 0) 296 297 #define WRITE_ONCE(x, val) \ 298 ({ \ 299 union { typeof(x) __val; char __c[1]; } __u = \ 300 { .__val = (__force typeof(x)) (val) }; \ 301 __write_once_size(&(x), __u.__c, sizeof(x)); \ 302 __u.__val; \ 303 }) 304 305 #endif /* __KERNEL__ */ 306 307 #endif /* __ASSEMBLY__ */ 308 309 #ifdef __KERNEL__ 310 /* 311 * Allow us to mark functions as 'deprecated' and have gcc emit a nice 312 * warning for each use, in hopes of speeding the functions removal. 313 * Usage is: 314 * int __deprecated foo(void) 315 */ 316 #ifndef __deprecated 317 # define __deprecated /* unimplemented */ 318 #endif 319 320 #ifdef MODULE 321 #define __deprecated_for_modules __deprecated 322 #else 323 #define __deprecated_for_modules 324 #endif 325 326 #ifndef __must_check 327 #define __must_check 328 #endif 329 330 #ifndef CONFIG_ENABLE_MUST_CHECK 331 #undef __must_check 332 #define __must_check 333 #endif 334 #ifndef CONFIG_ENABLE_WARN_DEPRECATED 335 #undef __deprecated 336 #undef __deprecated_for_modules 337 #define __deprecated 338 #define __deprecated_for_modules 339 #endif 340 341 #ifndef __malloc 342 #define __malloc 343 #endif 344 345 /* 346 * Allow us to avoid 'defined but not used' warnings on functions and data, 347 * as well as force them to be emitted to the assembly file. 348 * 349 * As of gcc 3.4, static functions that are not marked with attribute((used)) 350 * may be elided from the assembly file. As of gcc 3.4, static data not so 351 * marked will not be elided, but this may change in a future gcc version. 352 * 353 * NOTE: Because distributions shipped with a backported unit-at-a-time 354 * compiler in gcc 3.3, we must define __used to be __attribute__((used)) 355 * for gcc >=3.3 instead of 3.4. 356 * 357 * In prior versions of gcc, such functions and data would be emitted, but 358 * would be warned about except with attribute((unused)). 359 * 360 * Mark functions that are referenced only in inline assembly as __used so 361 * the code is emitted even though it appears to be unreferenced. 362 */ 363 #ifndef __used 364 # define __used /* unimplemented */ 365 #endif 366 367 #ifndef __maybe_unused 368 # define __maybe_unused /* unimplemented */ 369 #endif 370 371 #ifndef __always_unused 372 # define __always_unused /* unimplemented */ 373 #endif 374 375 #ifndef noinline 376 #define noinline 377 #endif 378 379 /* 380 * Rather then using noinline to prevent stack consumption, use 381 * noinline_for_stack instead. For documentation reasons. 382 */ 383 #define noinline_for_stack noinline 384 385 #ifndef __always_inline 386 #define __always_inline inline 387 #endif 388 389 #endif /* __KERNEL__ */ 390 391 /* 392 * From the GCC manual: 393 * 394 * Many functions do not examine any values except their arguments, 395 * and have no effects except the return value. Basically this is 396 * just slightly more strict class than the `pure' attribute above, 397 * since function is not allowed to read global memory. 398 * 399 * Note that a function that has pointer arguments and examines the 400 * data pointed to must _not_ be declared `const'. Likewise, a 401 * function that calls a non-`const' function usually must not be 402 * `const'. It does not make sense for a `const' function to return 403 * `void'. 404 */ 405 #ifndef __attribute_const__ 406 # define __attribute_const__ /* unimplemented */ 407 #endif 408 409 /* 410 * Tell gcc if a function is cold. The compiler will assume any path 411 * directly leading to the call is unlikely. 412 */ 413 414 #ifndef __cold 415 #define __cold 416 #endif 417 418 /* Simple shorthand for a section definition */ 419 #ifndef __section 420 # define __section(S) __attribute__ ((__section__(#S))) 421 #endif 422 423 #ifndef __visible 424 #define __visible 425 #endif 426 427 /* 428 * Assume alignment of return value. 429 */ 430 #ifndef __assume_aligned 431 #define __assume_aligned(a, ...) 432 #endif 433 434 435 /* Are two types/vars the same type (ignoring qualifiers)? */ 436 #ifndef __same_type 437 # define __same_type(a, b) __builtin_types_compatible_p(typeof(a), typeof(b)) 438 #endif 439 440 /* Is this type a native word size -- useful for atomic operations */ 441 #ifndef __native_word 442 # define __native_word(t) (sizeof(t) == sizeof(char) || sizeof(t) == sizeof(short) || sizeof(t) == sizeof(int) || sizeof(t) == sizeof(long)) 443 #endif 444 445 /* Compile time object size, -1 for unknown */ 446 #ifndef __compiletime_object_size 447 # define __compiletime_object_size(obj) -1 448 #endif 449 #ifndef __compiletime_warning 450 # define __compiletime_warning(message) 451 #endif 452 #ifndef __compiletime_error 453 # define __compiletime_error(message) 454 /* 455 * Sparse complains of variable sized arrays due to the temporary variable in 456 * __compiletime_assert. Unfortunately we can't just expand it out to make 457 * sparse see a constant array size without breaking compiletime_assert on old 458 * versions of GCC (e.g. 4.2.4), so hide the array from sparse altogether. 459 */ 460 # ifndef __CHECKER__ 461 # define __compiletime_error_fallback(condition) \ 462 do { } while (0) 463 # endif 464 #endif 465 #ifndef __compiletime_error_fallback 466 # define __compiletime_error_fallback(condition) do { } while (0) 467 #endif 468 469 #define __compiletime_assert(condition, msg, prefix, suffix) \ 470 do { \ 471 bool __cond = !(condition); \ 472 extern void prefix ## suffix(void) __compiletime_error(msg); \ 473 if (__cond) \ 474 prefix ## suffix(); \ 475 __compiletime_error_fallback(__cond); \ 476 } while (0) 477 478 #define _compiletime_assert(condition, msg, prefix, suffix) \ 479 __compiletime_assert(condition, msg, prefix, suffix) 480 481 /** 482 * compiletime_assert - break build and emit msg if condition is false 483 * @condition: a compile-time constant condition to check 484 * @msg: a message to emit if condition is false 485 * 486 * In tradition of POSIX assert, this macro will break the build if the 487 * supplied condition is *false*, emitting the supplied error message if the 488 * compiler has support to do so. 489 */ 490 #define compiletime_assert(condition, msg) \ 491 _compiletime_assert(condition, msg, __compiletime_assert_, __LINE__) 492 493 #define compiletime_assert_atomic_type(t) \ 494 compiletime_assert(__native_word(t), \ 495 "Need native word sized stores/loads for atomicity.") 496 497 /* 498 * Prevent the compiler from merging or refetching accesses. The compiler 499 * is also forbidden from reordering successive instances of ACCESS_ONCE(), 500 * but only when the compiler is aware of some particular ordering. One way 501 * to make the compiler aware of ordering is to put the two invocations of 502 * ACCESS_ONCE() in different C statements. 503 * 504 * ACCESS_ONCE will only work on scalar types. For union types, ACCESS_ONCE 505 * on a union member will work as long as the size of the member matches the 506 * size of the union and the size is smaller than word size. 507 * 508 * The major use cases of ACCESS_ONCE used to be (1) Mediating communication 509 * between process-level code and irq/NMI handlers, all running on the same CPU, 510 * and (2) Ensuring that the compiler does not fold, spindle, or otherwise 511 * mutilate accesses that either do not require ordering or that interact 512 * with an explicit memory barrier or atomic instruction that provides the 513 * required ordering. 514 * 515 * If possible use READ_ONCE()/WRITE_ONCE() instead. 516 */ 517 #define __ACCESS_ONCE(x) ({ \ 518 __maybe_unused typeof(x) __var = (__force typeof(x)) 0; \ 519 (volatile typeof(x) *)&(x); }) 520 #define ACCESS_ONCE(x) (*__ACCESS_ONCE(x)) 521 522 /** 523 * lockless_dereference() - safely load a pointer for later dereference 524 * @p: The pointer to load 525 * 526 * Similar to rcu_dereference(), but for situations where the pointed-to 527 * object's lifetime is managed by something other than RCU. That 528 * "something other" might be reference counting or simple immortality. 529 * 530 * The seemingly unused void * variable is to validate @p is indeed a pointer 531 * type. All pointer types silently cast to void *. 532 */ 533 #define lockless_dereference(p) \ 534 ({ \ 535 typeof(p) _________p1 = READ_ONCE(p); \ 536 __maybe_unused const void * const _________p2 = _________p1; \ 537 smp_read_barrier_depends(); /* Dependency order vs. p above. */ \ 538 (_________p1); \ 539 }) 540 541 /* Ignore/forbid kprobes attach on very low level functions marked by this attribute: */ 542 #ifdef CONFIG_KPROBES 543 # define __kprobes __attribute__((__section__(".kprobes.text"))) 544 # define nokprobe_inline __always_inline 545 #else 546 # define __kprobes 547 # define nokprobe_inline inline 548 #endif 549 #endif /* __LINUX_COMPILER_H */
1 /* 2 * device.h - generic, centralized driver model 3 * 4 * Copyright (c) 2001-2003 Patrick Mochel <mochel@osdl.org> 5 * Copyright (c) 2004-2009 Greg Kroah-Hartman <gregkh@suse.de> 6 * Copyright (c) 2008-2009 Novell Inc. 7 * 8 * This file is released under the GPLv2 9 * 10 * See Documentation/driver-model/ for more information. 11 */ 12 13 #ifndef _DEVICE_H_ 14 #define _DEVICE_H_ 15 16 #include <linux/ioport.h> 17 #include <linux/kobject.h> 18 #include <linux/klist.h> 19 #include <linux/list.h> 20 #include <linux/lockdep.h> 21 #include <linux/compiler.h> 22 #include <linux/types.h> 23 #include <linux/mutex.h> 24 #include <linux/pinctrl/devinfo.h> 25 #include <linux/pm.h> 26 #include <linux/atomic.h> 27 #include <linux/ratelimit.h> 28 #include <linux/uidgid.h> 29 #include <linux/gfp.h> 30 #include <asm/device.h> 31 32 struct device; 33 struct device_private; 34 struct device_driver; 35 struct driver_private; 36 struct module; 37 struct class; 38 struct subsys_private; 39 struct bus_type; 40 struct device_node; 41 struct fwnode_handle; 42 struct iommu_ops; 43 struct iommu_group; 44 45 struct bus_attribute { 46 struct attribute attr; 47 ssize_t (*show)(struct bus_type *bus, char *buf); 48 ssize_t (*store)(struct bus_type *bus, const char *buf, size_t count); 49 }; 50 51 #define BUS_ATTR(_name, _mode, _show, _store) \ 52 struct bus_attribute bus_attr_##_name = __ATTR(_name, _mode, _show, _store) 53 #define BUS_ATTR_RW(_name) \ 54 struct bus_attribute bus_attr_##_name = __ATTR_RW(_name) 55 #define BUS_ATTR_RO(_name) \ 56 struct bus_attribute bus_attr_##_name = __ATTR_RO(_name) 57 58 extern int __must_check bus_create_file(struct bus_type *, 59 struct bus_attribute *); 60 extern void bus_remove_file(struct bus_type *, struct bus_attribute *); 61 62 /** 63 * struct bus_type - The bus type of the device 64 * 65 * @name: The name of the bus. 66 * @dev_name: Used for subsystems to enumerate devices like ("foo%u", dev->id). 67 * @dev_root: Default device to use as the parent. 68 * @dev_attrs: Default attributes of the devices on the bus. 69 * @bus_groups: Default attributes of the bus. 70 * @dev_groups: Default attributes of the devices on the bus. 71 * @drv_groups: Default attributes of the device drivers on the bus. 72 * @match: Called, perhaps multiple times, whenever a new device or driver 73 * is added for this bus. It should return a positive value if the 74 * given device can be handled by the given driver and zero 75 * otherwise. It may also return error code if determining that 76 * the driver supports the device is not possible. In case of 77 * -EPROBE_DEFER it will queue the device for deferred probing. 78 * @uevent: Called when a device is added, removed, or a few other things 79 * that generate uevents to add the environment variables. 80 * @probe: Called when a new device or driver add to this bus, and callback 81 * the specific driver's probe to initial the matched device. 82 * @remove: Called when a device removed from this bus. 83 * @shutdown: Called at shut-down time to quiesce the device. 84 * 85 * @online: Called to put the device back online (after offlining it). 86 * @offline: Called to put the device offline for hot-removal. May fail. 87 * 88 * @suspend: Called when a device on this bus wants to go to sleep mode. 89 * @resume: Called to bring a device on this bus out of sleep mode. 90 * @pm: Power management operations of this bus, callback the specific 91 * device driver's pm-ops. 92 * @iommu_ops: IOMMU specific operations for this bus, used to attach IOMMU 93 * driver implementations to a bus and allow the driver to do 94 * bus-specific setup 95 * @p: The private data of the driver core, only the driver core can 96 * touch this. 97 * @lock_key: Lock class key for use by the lock validator 98 * 99 * A bus is a channel between the processor and one or more devices. For the 100 * purposes of the device model, all devices are connected via a bus, even if 101 * it is an internal, virtual, "platform" bus. Buses can plug into each other. 102 * A USB controller is usually a PCI device, for example. The device model 103 * represents the actual connections between buses and the devices they control. 104 * A bus is represented by the bus_type structure. It contains the name, the 105 * default attributes, the bus' methods, PM operations, and the driver core's 106 * private data. 107 */ 108 struct bus_type { 109 const char *name; 110 const char *dev_name; 111 struct device *dev_root; 112 struct device_attribute *dev_attrs; /* use dev_groups instead */ 113 const struct attribute_group **bus_groups; 114 const struct attribute_group **dev_groups; 115 const struct attribute_group **drv_groups; 116 117 int (*match)(struct device *dev, struct device_driver *drv); 118 int (*uevent)(struct device *dev, struct kobj_uevent_env *env); 119 int (*probe)(struct device *dev); 120 int (*remove)(struct device *dev); 121 void (*shutdown)(struct device *dev); 122 123 int (*online)(struct device *dev); 124 int (*offline)(struct device *dev); 125 126 int (*suspend)(struct device *dev, pm_message_t state); 127 int (*resume)(struct device *dev); 128 129 const struct dev_pm_ops *pm; 130 131 const struct iommu_ops *iommu_ops; 132 133 struct subsys_private *p; 134 struct lock_class_key lock_key; 135 }; 136 137 extern int __must_check bus_register(struct bus_type *bus); 138 139 extern void bus_unregister(struct bus_type *bus); 140 141 extern int __must_check bus_rescan_devices(struct bus_type *bus); 142 143 /* iterator helpers for buses */ 144 struct subsys_dev_iter { 145 struct klist_iter ki; 146 const struct device_type *type; 147 }; 148 void subsys_dev_iter_init(struct subsys_dev_iter *iter, 149 struct bus_type *subsys, 150 struct device *start, 151 const struct device_type *type); 152 struct device *subsys_dev_iter_next(struct subsys_dev_iter *iter); 153 void subsys_dev_iter_exit(struct subsys_dev_iter *iter); 154 155 int bus_for_each_dev(struct bus_type *bus, struct device *start, void *data, 156 int (*fn)(struct device *dev, void *data)); 157 struct device *bus_find_device(struct bus_type *bus, struct device *start, 158 void *data, 159 int (*match)(struct device *dev, void *data)); 160 struct device *bus_find_device_by_name(struct bus_type *bus, 161 struct device *start, 162 const char *name); 163 struct device *subsys_find_device_by_id(struct bus_type *bus, unsigned int id, 164 struct device *hint); 165 int bus_for_each_drv(struct bus_type *bus, struct device_driver *start, 166 void *data, int (*fn)(struct device_driver *, void *)); 167 void bus_sort_breadthfirst(struct bus_type *bus, 168 int (*compare)(const struct device *a, 169 const struct device *b)); 170 /* 171 * Bus notifiers: Get notified of addition/removal of devices 172 * and binding/unbinding of drivers to devices. 173 * In the long run, it should be a replacement for the platform 174 * notify hooks. 175 */ 176 struct notifier_block; 177 178 extern int bus_register_notifier(struct bus_type *bus, 179 struct notifier_block *nb); 180 extern int bus_unregister_notifier(struct bus_type *bus, 181 struct notifier_block *nb); 182 183 /* All 4 notifers below get called with the target struct device * 184 * as an argument. Note that those functions are likely to be called 185 * with the device lock held in the core, so be careful. 186 */ 187 #define BUS_NOTIFY_ADD_DEVICE 0x00000001 /* device added */ 188 #define BUS_NOTIFY_DEL_DEVICE 0x00000002 /* device to be removed */ 189 #define BUS_NOTIFY_REMOVED_DEVICE 0x00000003 /* device removed */ 190 #define BUS_NOTIFY_BIND_DRIVER 0x00000004 /* driver about to be 191 bound */ 192 #define BUS_NOTIFY_BOUND_DRIVER 0x00000005 /* driver bound to device */ 193 #define BUS_NOTIFY_UNBIND_DRIVER 0x00000006 /* driver about to be 194 unbound */ 195 #define BUS_NOTIFY_UNBOUND_DRIVER 0x00000007 /* driver is unbound 196 from the device */ 197 #define BUS_NOTIFY_DRIVER_NOT_BOUND 0x00000008 /* driver fails to be bound */ 198 199 extern struct kset *bus_get_kset(struct bus_type *bus); 200 extern struct klist *bus_get_device_klist(struct bus_type *bus); 201 202 /** 203 * enum probe_type - device driver probe type to try 204 * Device drivers may opt in for special handling of their 205 * respective probe routines. This tells the core what to 206 * expect and prefer. 207 * 208 * @PROBE_DEFAULT_STRATEGY: Used by drivers that work equally well 209 * whether probed synchronously or asynchronously. 210 * @PROBE_PREFER_ASYNCHRONOUS: Drivers for "slow" devices which 211 * probing order is not essential for booting the system may 212 * opt into executing their probes asynchronously. 213 * @PROBE_FORCE_SYNCHRONOUS: Use this to annotate drivers that need 214 * their probe routines to run synchronously with driver and 215 * device registration (with the exception of -EPROBE_DEFER 216 * handling - re-probing always ends up being done asynchronously). 217 * 218 * Note that the end goal is to switch the kernel to use asynchronous 219 * probing by default, so annotating drivers with 220 * %PROBE_PREFER_ASYNCHRONOUS is a temporary measure that allows us 221 * to speed up boot process while we are validating the rest of the 222 * drivers. 223 */ 224 enum probe_type { 225 PROBE_DEFAULT_STRATEGY, 226 PROBE_PREFER_ASYNCHRONOUS, 227 PROBE_FORCE_SYNCHRONOUS, 228 }; 229 230 /** 231 * struct device_driver - The basic device driver structure 232 * @name: Name of the device driver. 233 * @bus: The bus which the device of this driver belongs to. 234 * @owner: The module owner. 235 * @mod_name: Used for built-in modules. 236 * @suppress_bind_attrs: Disables bind/unbind via sysfs. 237 * @probe_type: Type of the probe (synchronous or asynchronous) to use. 238 * @of_match_table: The open firmware table. 239 * @acpi_match_table: The ACPI match table. 240 * @probe: Called to query the existence of a specific device, 241 * whether this driver can work with it, and bind the driver 242 * to a specific device. 243 * @remove: Called when the device is removed from the system to 244 * unbind a device from this driver. 245 * @shutdown: Called at shut-down time to quiesce the device. 246 * @suspend: Called to put the device to sleep mode. Usually to a 247 * low power state. 248 * @resume: Called to bring a device from sleep mode. 249 * @groups: Default attributes that get created by the driver core 250 * automatically. 251 * @pm: Power management operations of the device which matched 252 * this driver. 253 * @p: Driver core's private data, no one other than the driver 254 * core can touch this. 255 * 256 * The device driver-model tracks all of the drivers known to the system. 257 * The main reason for this tracking is to enable the driver core to match 258 * up drivers with new devices. Once drivers are known objects within the 259 * system, however, a number of other things become possible. Device drivers 260 * can export information and configuration variables that are independent 261 * of any specific device. 262 */ 263 struct device_driver { 264 const char *name; 265 struct bus_type *bus; 266 267 struct module *owner; 268 const char *mod_name; /* used for built-in modules */ 269 270 bool suppress_bind_attrs; /* disables bind/unbind via sysfs */ 271 enum probe_type probe_type; 272 273 const struct of_device_id *of_match_table; 274 const struct acpi_device_id *acpi_match_table; 275 276 int (*probe) (struct device *dev); 277 int (*remove) (struct device *dev); 278 void (*shutdown) (struct device *dev); 279 int (*suspend) (struct device *dev, pm_message_t state); 280 int (*resume) (struct device *dev); 281 const struct attribute_group **groups; 282 283 const struct dev_pm_ops *pm; 284 285 struct driver_private *p; 286 }; 287 288 289 extern int __must_check driver_register(struct device_driver *drv); 290 extern void driver_unregister(struct device_driver *drv); 291 292 extern struct device_driver *driver_find(const char *name, 293 struct bus_type *bus); 294 extern int driver_probe_done(void); 295 extern void wait_for_device_probe(void); 296 297 298 /* sysfs interface for exporting driver attributes */ 299 300 struct driver_attribute { 301 struct attribute attr; 302 ssize_t (*show)(struct device_driver *driver, char *buf); 303 ssize_t (*store)(struct device_driver *driver, const char *buf, 304 size_t count); 305 }; 306 307 #define DRIVER_ATTR(_name, _mode, _show, _store) \ 308 struct driver_attribute driver_attr_##_name = __ATTR(_name, _mode, _show, _store) 309 #define DRIVER_ATTR_RW(_name) \ 310 struct driver_attribute driver_attr_##_name = __ATTR_RW(_name) 311 #define DRIVER_ATTR_RO(_name) \ 312 struct driver_attribute driver_attr_##_name = __ATTR_RO(_name) 313 #define DRIVER_ATTR_WO(_name) \ 314 struct driver_attribute driver_attr_##_name = __ATTR_WO(_name) 315 316 extern int __must_check driver_create_file(struct device_driver *driver, 317 const struct driver_attribute *attr); 318 extern void driver_remove_file(struct device_driver *driver, 319 const struct driver_attribute *attr); 320 321 extern int __must_check driver_for_each_device(struct device_driver *drv, 322 struct device *start, 323 void *data, 324 int (*fn)(struct device *dev, 325 void *)); 326 struct device *driver_find_device(struct device_driver *drv, 327 struct device *start, void *data, 328 int (*match)(struct device *dev, void *data)); 329 330 /** 331 * struct subsys_interface - interfaces to device functions 332 * @name: name of the device function 333 * @subsys: subsytem of the devices to attach to 334 * @node: the list of functions registered at the subsystem 335 * @add_dev: device hookup to device function handler 336 * @remove_dev: device hookup to device function handler 337 * 338 * Simple interfaces attached to a subsystem. Multiple interfaces can 339 * attach to a subsystem and its devices. Unlike drivers, they do not 340 * exclusively claim or control devices. Interfaces usually represent 341 * a specific functionality of a subsystem/class of devices. 342 */ 343 struct subsys_interface { 344 const char *name; 345 struct bus_type *subsys; 346 struct list_head node; 347 int (*add_dev)(struct device *dev, struct subsys_interface *sif); 348 void (*remove_dev)(struct device *dev, struct subsys_interface *sif); 349 }; 350 351 int subsys_interface_register(struct subsys_interface *sif); 352 void subsys_interface_unregister(struct subsys_interface *sif); 353 354 int subsys_system_register(struct bus_type *subsys, 355 const struct attribute_group **groups); 356 int subsys_virtual_register(struct bus_type *subsys, 357 const struct attribute_group **groups); 358 359 /** 360 * struct class - device classes 361 * @name: Name of the class. 362 * @owner: The module owner. 363 * @class_attrs: Default attributes of this class. 364 * @dev_groups: Default attributes of the devices that belong to the class. 365 * @dev_kobj: The kobject that represents this class and links it into the hierarchy. 366 * @dev_uevent: Called when a device is added, removed from this class, or a 367 * few other things that generate uevents to add the environment 368 * variables. 369 * @devnode: Callback to provide the devtmpfs. 370 * @class_release: Called to release this class. 371 * @dev_release: Called to release the device. 372 * @suspend: Used to put the device to sleep mode, usually to a low power 373 * state. 374 * @resume: Used to bring the device from the sleep mode. 375 * @ns_type: Callbacks so sysfs can detemine namespaces. 376 * @namespace: Namespace of the device belongs to this class. 377 * @pm: The default device power management operations of this class. 378 * @p: The private data of the driver core, no one other than the 379 * driver core can touch this. 380 * 381 * A class is a higher-level view of a device that abstracts out low-level 382 * implementation details. Drivers may see a SCSI disk or an ATA disk, but, 383 * at the class level, they are all simply disks. Classes allow user space 384 * to work with devices based on what they do, rather than how they are 385 * connected or how they work. 386 */ 387 struct class { 388 const char *name; 389 struct module *owner; 390 391 struct class_attribute *class_attrs; 392 const struct attribute_group **dev_groups; 393 struct kobject *dev_kobj; 394 395 int (*dev_uevent)(struct device *dev, struct kobj_uevent_env *env); 396 char *(*devnode)(struct device *dev, umode_t *mode); 397 398 void (*class_release)(struct class *class); 399 void (*dev_release)(struct device *dev); 400 401 int (*suspend)(struct device *dev, pm_message_t state); 402 int (*resume)(struct device *dev); 403 404 const struct kobj_ns_type_operations *ns_type; 405 const void *(*namespace)(struct device *dev); 406 407 const struct dev_pm_ops *pm; 408 409 struct subsys_private *p; 410 }; 411 412 struct class_dev_iter { 413 struct klist_iter ki; 414 const struct device_type *type; 415 }; 416 417 extern struct kobject *sysfs_dev_block_kobj; 418 extern struct kobject *sysfs_dev_char_kobj; 419 extern int __must_check __class_register(struct class *class, 420 struct lock_class_key *key); 421 extern void class_unregister(struct class *class); 422 423 /* This is a #define to keep the compiler from merging different 424 * instances of the __key variable */ 425 #define class_register(class) \ 426 ({ \ 427 static struct lock_class_key __key; \ 428 __class_register(class, &__key); \ 429 }) 430 431 struct class_compat; 432 struct class_compat *class_compat_register(const char *name); 433 void class_compat_unregister(struct class_compat *cls); 434 int class_compat_create_link(struct class_compat *cls, struct device *dev, 435 struct device *device_link); 436 void class_compat_remove_link(struct class_compat *cls, struct device *dev, 437 struct device *device_link); 438 439 extern void class_dev_iter_init(struct class_dev_iter *iter, 440 struct class *class, 441 struct device *start, 442 const struct device_type *type); 443 extern struct device *class_dev_iter_next(struct class_dev_iter *iter); 444 extern void class_dev_iter_exit(struct class_dev_iter *iter); 445 446 extern int class_for_each_device(struct class *class, struct device *start, 447 void *data, 448 int (*fn)(struct device *dev, void *data)); 449 extern struct device *class_find_device(struct class *class, 450 struct device *start, const void *data, 451 int (*match)(struct device *, const void *)); 452 453 struct class_attribute { 454 struct attribute attr; 455 ssize_t (*show)(struct class *class, struct class_attribute *attr, 456 char *buf); 457 ssize_t (*store)(struct class *class, struct class_attribute *attr, 458 const char *buf, size_t count); 459 }; 460 461 #define CLASS_ATTR(_name, _mode, _show, _store) \ 462 struct class_attribute class_attr_##_name = __ATTR(_name, _mode, _show, _store) 463 #define CLASS_ATTR_RW(_name) \ 464 struct class_attribute class_attr_##_name = __ATTR_RW(_name) 465 #define CLASS_ATTR_RO(_name) \ 466 struct class_attribute class_attr_##_name = __ATTR_RO(_name) 467 468 extern int __must_check class_create_file_ns(struct class *class, 469 const struct class_attribute *attr, 470 const void *ns); 471 extern void class_remove_file_ns(struct class *class, 472 const struct class_attribute *attr, 473 const void *ns); 474 475 static inline int __must_check class_create_file(struct class *class, 476 const struct class_attribute *attr) 477 { 478 return class_create_file_ns(class, attr, NULL); 479 } 480 481 static inline void class_remove_file(struct class *class, 482 const struct class_attribute *attr) 483 { 484 return class_remove_file_ns(class, attr, NULL); 485 } 486 487 /* Simple class attribute that is just a static string */ 488 struct class_attribute_string { 489 struct class_attribute attr; 490 char *str; 491 }; 492 493 /* Currently read-only only */ 494 #define _CLASS_ATTR_STRING(_name, _mode, _str) \ 495 { __ATTR(_name, _mode, show_class_attr_string, NULL), _str } 496 #define CLASS_ATTR_STRING(_name, _mode, _str) \ 497 struct class_attribute_string class_attr_##_name = \ 498 _CLASS_ATTR_STRING(_name, _mode, _str) 499 500 extern ssize_t show_class_attr_string(struct class *class, struct class_attribute *attr, 501 char *buf); 502 503 struct class_interface { 504 struct list_head node; 505 struct class *class; 506 507 int (*add_dev) (struct device *, struct class_interface *); 508 void (*remove_dev) (struct device *, struct class_interface *); 509 }; 510 511 extern int __must_check class_interface_register(struct class_interface *); 512 extern void class_interface_unregister(struct class_interface *); 513 514 extern struct class * __must_check __class_create(struct module *owner, 515 const char *name, 516 struct lock_class_key *key); 517 extern void class_destroy(struct class *cls); 518 519 /* This is a #define to keep the compiler from merging different 520 * instances of the __key variable */ 521 #define class_create(owner, name) \ 522 ({ \ 523 static struct lock_class_key __key; \ 524 __class_create(owner, name, &__key); \ 525 }) 526 527 /* 528 * The type of device, "struct device" is embedded in. A class 529 * or bus can contain devices of different types 530 * like "partitions" and "disks", "mouse" and "event". 531 * This identifies the device type and carries type-specific 532 * information, equivalent to the kobj_type of a kobject. 533 * If "name" is specified, the uevent will contain it in 534 * the DEVTYPE variable. 535 */ 536 struct device_type { 537 const char *name; 538 const struct attribute_group **groups; 539 int (*uevent)(struct device *dev, struct kobj_uevent_env *env); 540 char *(*devnode)(struct device *dev, umode_t *mode, 541 kuid_t *uid, kgid_t *gid); 542 void (*release)(struct device *dev); 543 544 const struct dev_pm_ops *pm; 545 }; 546 547 /* interface for exporting device attributes */ 548 struct device_attribute { 549 struct attribute attr; 550 ssize_t (*show)(struct device *dev, struct device_attribute *attr, 551 char *buf); 552 ssize_t (*store)(struct device *dev, struct device_attribute *attr, 553 const char *buf, size_t count); 554 }; 555 556 struct dev_ext_attribute { 557 struct device_attribute attr; 558 void *var; 559 }; 560 561 ssize_t device_show_ulong(struct device *dev, struct device_attribute *attr, 562 char *buf); 563 ssize_t device_store_ulong(struct device *dev, struct device_attribute *attr, 564 const char *buf, size_t count); 565 ssize_t device_show_int(struct device *dev, struct device_attribute *attr, 566 char *buf); 567 ssize_t device_store_int(struct device *dev, struct device_attribute *attr, 568 const char *buf, size_t count); 569 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr, 570 char *buf); 571 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr, 572 const char *buf, size_t count); 573 574 #define DEVICE_ATTR(_name, _mode, _show, _store) \ 575 struct device_attribute dev_attr_##_name = __ATTR(_name, _mode, _show, _store) 576 #define DEVICE_ATTR_RW(_name) \ 577 struct device_attribute dev_attr_##_name = __ATTR_RW(_name) 578 #define DEVICE_ATTR_RO(_name) \ 579 struct device_attribute dev_attr_##_name = __ATTR_RO(_name) 580 #define DEVICE_ATTR_WO(_name) \ 581 struct device_attribute dev_attr_##_name = __ATTR_WO(_name) 582 #define DEVICE_ULONG_ATTR(_name, _mode, _var) \ 583 struct dev_ext_attribute dev_attr_##_name = \ 584 { __ATTR(_name, _mode, device_show_ulong, device_store_ulong), &(_var) } 585 #define DEVICE_INT_ATTR(_name, _mode, _var) \ 586 struct dev_ext_attribute dev_attr_##_name = \ 587 { __ATTR(_name, _mode, device_show_int, device_store_int), &(_var) } 588 #define DEVICE_BOOL_ATTR(_name, _mode, _var) \ 589 struct dev_ext_attribute dev_attr_##_name = \ 590 { __ATTR(_name, _mode, device_show_bool, device_store_bool), &(_var) } 591 #define DEVICE_ATTR_IGNORE_LOCKDEP(_name, _mode, _show, _store) \ 592 struct device_attribute dev_attr_##_name = \ 593 __ATTR_IGNORE_LOCKDEP(_name, _mode, _show, _store) 594 595 extern int device_create_file(struct device *device, 596 const struct device_attribute *entry); 597 extern void device_remove_file(struct device *dev, 598 const struct device_attribute *attr); 599 extern bool device_remove_file_self(struct device *dev, 600 const struct device_attribute *attr); 601 extern int __must_check device_create_bin_file(struct device *dev, 602 const struct bin_attribute *attr); 603 extern void device_remove_bin_file(struct device *dev, 604 const struct bin_attribute *attr); 605 606 /* device resource management */ 607 typedef void (*dr_release_t)(struct device *dev, void *res); 608 typedef int (*dr_match_t)(struct device *dev, void *res, void *match_data); 609 610 #ifdef CONFIG_DEBUG_DEVRES 611 extern void *__devres_alloc_node(dr_release_t release, size_t size, gfp_t gfp, 612 int nid, const char *name) __malloc; 613 #define devres_alloc(release, size, gfp) \ 614 __devres_alloc_node(release, size, gfp, NUMA_NO_NODE, #release) 615 #define devres_alloc_node(release, size, gfp, nid) \ 616 __devres_alloc_node(release, size, gfp, nid, #release) 617 #else 618 extern void *devres_alloc_node(dr_release_t release, size_t size, gfp_t gfp, 619 int nid) __malloc; 620 static inline void *devres_alloc(dr_release_t release, size_t size, gfp_t gfp) 621 { 622 return devres_alloc_node(release, size, gfp, NUMA_NO_NODE); 623 } 624 #endif 625 626 extern void devres_for_each_res(struct device *dev, dr_release_t release, 627 dr_match_t match, void *match_data, 628 void (*fn)(struct device *, void *, void *), 629 void *data); 630 extern void devres_free(void *res); 631 extern void devres_add(struct device *dev, void *res); 632 extern void *devres_find(struct device *dev, dr_release_t release, 633 dr_match_t match, void *match_data); 634 extern void *devres_get(struct device *dev, void *new_res, 635 dr_match_t match, void *match_data); 636 extern void *devres_remove(struct device *dev, dr_release_t release, 637 dr_match_t match, void *match_data); 638 extern int devres_destroy(struct device *dev, dr_release_t release, 639 dr_match_t match, void *match_data); 640 extern int devres_release(struct device *dev, dr_release_t release, 641 dr_match_t match, void *match_data); 642 643 /* devres group */ 644 extern void * __must_check devres_open_group(struct device *dev, void *id, 645 gfp_t gfp); 646 extern void devres_close_group(struct device *dev, void *id); 647 extern void devres_remove_group(struct device *dev, void *id); 648 extern int devres_release_group(struct device *dev, void *id); 649 650 /* managed devm_k.alloc/kfree for device drivers */ 651 extern void *devm_kmalloc(struct device *dev, size_t size, gfp_t gfp) __malloc; 652 extern __printf(3, 0) 653 char *devm_kvasprintf(struct device *dev, gfp_t gfp, const char *fmt, 654 va_list ap) __malloc; 655 extern __printf(3, 4) 656 char *devm_kasprintf(struct device *dev, gfp_t gfp, const char *fmt, ...) __malloc; 657 static inline void *devm_kzalloc(struct device *dev, size_t size, gfp_t gfp) 658 { 659 return devm_kmalloc(dev, size, gfp | __GFP_ZERO); 660 } 661 static inline void *devm_kmalloc_array(struct device *dev, 662 size_t n, size_t size, gfp_t flags) 663 { 664 if (size != 0 && n > SIZE_MAX / size) 665 return NULL; 666 return devm_kmalloc(dev, n * size, flags); 667 } 668 static inline void *devm_kcalloc(struct device *dev, 669 size_t n, size_t size, gfp_t flags) 670 { 671 return devm_kmalloc_array(dev, n, size, flags | __GFP_ZERO); 672 } 673 extern void devm_kfree(struct device *dev, void *p); 674 extern char *devm_kstrdup(struct device *dev, const char *s, gfp_t gfp) __malloc; 675 extern void *devm_kmemdup(struct device *dev, const void *src, size_t len, 676 gfp_t gfp); 677 678 extern unsigned long devm_get_free_pages(struct device *dev, 679 gfp_t gfp_mask, unsigned int order); 680 extern void devm_free_pages(struct device *dev, unsigned long addr); 681 682 void __iomem *devm_ioremap_resource(struct device *dev, struct resource *res); 683 684 /* allows to add/remove a custom action to devres stack */ 685 int devm_add_action(struct device *dev, void (*action)(void *), void *data); 686 void devm_remove_action(struct device *dev, void (*action)(void *), void *data); 687 688 static inline int devm_add_action_or_reset(struct device *dev, 689 void (*action)(void *), void *data) 690 { 691 int ret; 692 693 ret = devm_add_action(dev, action, data); 694 if (ret) 695 action(data); 696 697 return ret; 698 } 699 700 struct device_dma_parameters { 701 /* 702 * a low level driver may set these to teach IOMMU code about 703 * sg limitations. 704 */ 705 unsigned int max_segment_size; 706 unsigned long segment_boundary_mask; 707 }; 708 709 /** 710 * struct device - The basic device structure 711 * @parent: The device's "parent" device, the device to which it is attached. 712 * In most cases, a parent device is some sort of bus or host 713 * controller. If parent is NULL, the device, is a top-level device, 714 * which is not usually what you want. 715 * @p: Holds the private data of the driver core portions of the device. 716 * See the comment of the struct device_private for detail. 717 * @kobj: A top-level, abstract class from which other classes are derived. 718 * @init_name: Initial name of the device. 719 * @type: The type of device. 720 * This identifies the device type and carries type-specific 721 * information. 722 * @mutex: Mutex to synchronize calls to its driver. 723 * @bus: Type of bus device is on. 724 * @driver: Which driver has allocated this 725 * @platform_data: Platform data specific to the device. 726 * Example: For devices on custom boards, as typical of embedded 727 * and SOC based hardware, Linux often uses platform_data to point 728 * to board-specific structures describing devices and how they 729 * are wired. That can include what ports are available, chip 730 * variants, which GPIO pins act in what additional roles, and so 731 * on. This shrinks the "Board Support Packages" (BSPs) and 732 * minimizes board-specific #ifdefs in drivers. 733 * @driver_data: Private pointer for driver specific info. 734 * @power: For device power management. 735 * See Documentation/power/devices.txt for details. 736 * @pm_domain: Provide callbacks that are executed during system suspend, 737 * hibernation, system resume and during runtime PM transitions 738 * along with subsystem-level and driver-level callbacks. 739 * @pins: For device pin management. 740 * See Documentation/pinctrl.txt for details. 741 * @msi_list: Hosts MSI descriptors 742 * @msi_domain: The generic MSI domain this device is using. 743 * @numa_node: NUMA node this device is close to. 744 * @dma_mask: Dma mask (if dma'ble device). 745 * @coherent_dma_mask: Like dma_mask, but for alloc_coherent mapping as not all 746 * hardware supports 64-bit addresses for consistent allocations 747 * such descriptors. 748 * @dma_pfn_offset: offset of DMA memory range relatively of RAM 749 * @dma_parms: A low level driver may set these to teach IOMMU code about 750 * segment limitations. 751 * @dma_pools: Dma pools (if dma'ble device). 752 * @dma_mem: Internal for coherent mem override. 753 * @cma_area: Contiguous memory area for dma allocations 754 * @archdata: For arch-specific additions. 755 * @of_node: Associated device tree node. 756 * @fwnode: Associated device node supplied by platform firmware. 757 * @devt: For creating the sysfs "dev". 758 * @id: device instance 759 * @devres_lock: Spinlock to protect the resource of the device. 760 * @devres_head: The resources list of the device. 761 * @knode_class: The node used to add the device to the class list. 762 * @class: The class of the device. 763 * @groups: Optional attribute groups. 764 * @release: Callback to free the device after all references have 765 * gone away. This should be set by the allocator of the 766 * device (i.e. the bus driver that discovered the device). 767 * @iommu_group: IOMMU group the device belongs to. 768 * 769 * @offline_disabled: If set, the device is permanently online. 770 * @offline: Set after successful invocation of bus type's .offline(). 771 * 772 * At the lowest level, every device in a Linux system is represented by an 773 * instance of struct device. The device structure contains the information 774 * that the device model core needs to model the system. Most subsystems, 775 * however, track additional information about the devices they host. As a 776 * result, it is rare for devices to be represented by bare device structures; 777 * instead, that structure, like kobject structures, is usually embedded within 778 * a higher-level representation of the device. 779 */ 780 struct device { 781 struct device *parent; 782 783 struct device_private *p; 784 785 struct kobject kobj; 786 const char *init_name; /* initial name of the device */ 787 const struct device_type *type; 788 789 struct mutex mutex; /* mutex to synchronize calls to 790 * its driver. 791 */ 792 793 struct bus_type *bus; /* type of bus device is on */ 794 struct device_driver *driver; /* which driver has allocated this 795 device */ 796 void *platform_data; /* Platform specific data, device 797 core doesn't touch it */ 798 void *driver_data; /* Driver data, set and get with 799 dev_set/get_drvdata */ 800 struct dev_pm_info power; 801 struct dev_pm_domain *pm_domain; 802 803 #ifdef CONFIG_GENERIC_MSI_IRQ_DOMAIN 804 struct irq_domain *msi_domain; 805 #endif 806 #ifdef CONFIG_PINCTRL 807 struct dev_pin_info *pins; 808 #endif 809 #ifdef CONFIG_GENERIC_MSI_IRQ 810 struct list_head msi_list; 811 #endif 812 813 #ifdef CONFIG_NUMA 814 int numa_node; /* NUMA node this device is close to */ 815 #endif 816 u64 *dma_mask; /* dma mask (if dma'able device) */ 817 u64 coherent_dma_mask;/* Like dma_mask, but for 818 alloc_coherent mappings as 819 not all hardware supports 820 64 bit addresses for consistent 821 allocations such descriptors. */ 822 unsigned long dma_pfn_offset; 823 824 struct device_dma_parameters *dma_parms; 825 826 struct list_head dma_pools; /* dma pools (if dma'ble) */ 827 828 struct dma_coherent_mem *dma_mem; /* internal for coherent mem 829 override */ 830 #ifdef CONFIG_DMA_CMA 831 struct cma *cma_area; /* contiguous memory area for dma 832 allocations */ 833 #endif 834 /* arch specific additions */ 835 struct dev_archdata archdata; 836 837 struct device_node *of_node; /* associated device tree node */ 838 struct fwnode_handle *fwnode; /* firmware device node */ 839 840 dev_t devt; /* dev_t, creates the sysfs "dev" */ 841 u32 id; /* device instance */ 842 843 spinlock_t devres_lock; 844 struct list_head devres_head; 845 846 struct klist_node knode_class; 847 struct class *class; 848 const struct attribute_group **groups; /* optional groups */ 849 850 void (*release)(struct device *dev); 851 struct iommu_group *iommu_group; 852 853 bool offline_disabled:1; 854 bool offline:1; 855 }; 856 857 static inline struct device *kobj_to_dev(struct kobject *kobj) 858 { 859 return container_of(kobj, struct device, kobj); 860 } 861 862 /* Get the wakeup routines, which depend on struct device */ 863 #include <linux/pm_wakeup.h> 864 865 static inline const char *dev_name(const struct device *dev) 866 { 867 /* Use the init name until the kobject becomes available */ 868 if (dev->init_name) 869 return dev->init_name; 870 871 return kobject_name(&dev->kobj); 872 } 873 874 extern __printf(2, 3) 875 int dev_set_name(struct device *dev, const char *name, ...); 876 877 #ifdef CONFIG_NUMA 878 static inline int dev_to_node(struct device *dev) 879 { 880 return dev->numa_node; 881 } 882 static inline void set_dev_node(struct device *dev, int node) 883 { 884 dev->numa_node = node; 885 } 886 #else 887 static inline int dev_to_node(struct device *dev) 888 { 889 return -1; 890 } 891 static inline void set_dev_node(struct device *dev, int node) 892 { 893 } 894 #endif 895 896 static inline struct irq_domain *dev_get_msi_domain(const struct device *dev) 897 { 898 #ifdef CONFIG_GENERIC_MSI_IRQ_DOMAIN 899 return dev->msi_domain; 900 #else 901 return NULL; 902 #endif 903 } 904 905 static inline void dev_set_msi_domain(struct device *dev, struct irq_domain *d) 906 { 907 #ifdef CONFIG_GENERIC_MSI_IRQ_DOMAIN 908 dev->msi_domain = d; 909 #endif 910 } 911 912 static inline void *dev_get_drvdata(const struct device *dev) 913 { 914 return dev->driver_data; 915 } 916 917 static inline void dev_set_drvdata(struct device *dev, void *data) 918 { 919 dev->driver_data = data; 920 } 921 922 static inline struct pm_subsys_data *dev_to_psd(struct device *dev) 923 { 924 return dev ? dev->power.subsys_data : NULL; 925 } 926 927 static inline unsigned int dev_get_uevent_suppress(const struct device *dev) 928 { 929 return dev->kobj.uevent_suppress; 930 } 931 932 static inline void dev_set_uevent_suppress(struct device *dev, int val) 933 { 934 dev->kobj.uevent_suppress = val; 935 } 936 937 static inline int device_is_registered(struct device *dev) 938 { 939 return dev->kobj.state_in_sysfs; 940 } 941 942 static inline void device_enable_async_suspend(struct device *dev) 943 { 944 if (!dev->power.is_prepared) 945 dev->power.async_suspend = true; 946 } 947 948 static inline void device_disable_async_suspend(struct device *dev) 949 { 950 if (!dev->power.is_prepared) 951 dev->power.async_suspend = false; 952 } 953 954 static inline bool device_async_suspend_enabled(struct device *dev) 955 { 956 return !!dev->power.async_suspend; 957 } 958 959 static inline void dev_pm_syscore_device(struct device *dev, bool val) 960 { 961 #ifdef CONFIG_PM_SLEEP 962 dev->power.syscore = val; 963 #endif 964 } 965 966 static inline void device_lock(struct device *dev) 967 { 968 mutex_lock(&dev->mutex); 969 } 970 971 static inline int device_lock_interruptible(struct device *dev) 972 { 973 return mutex_lock_interruptible(&dev->mutex); 974 } 975 976 static inline int device_trylock(struct device *dev) 977 { 978 return mutex_trylock(&dev->mutex); 979 } 980 981 static inline void device_unlock(struct device *dev) 982 { 983 mutex_unlock(&dev->mutex); 984 } 985 986 static inline void device_lock_assert(struct device *dev) 987 { 988 lockdep_assert_held(&dev->mutex); 989 } 990 991 static inline struct device_node *dev_of_node(struct device *dev) 992 { 993 if (!IS_ENABLED(CONFIG_OF)) 994 return NULL; 995 return dev->of_node; 996 } 997 998 void driver_init(void); 999 1000 /* 1001 * High level routines for use by the bus drivers 1002 */ 1003 extern int __must_check device_register(struct device *dev); 1004 extern void device_unregister(struct device *dev); 1005 extern void device_initialize(struct device *dev); 1006 extern int __must_check device_add(struct device *dev); 1007 extern void device_del(struct device *dev); 1008 extern int device_for_each_child(struct device *dev, void *data, 1009 int (*fn)(struct device *dev, void *data)); 1010 extern int device_for_each_child_reverse(struct device *dev, void *data, 1011 int (*fn)(struct device *dev, void *data)); 1012 extern struct device *device_find_child(struct device *dev, void *data, 1013 int (*match)(struct device *dev, void *data)); 1014 extern int device_rename(struct device *dev, const char *new_name); 1015 extern int device_move(struct device *dev, struct device *new_parent, 1016 enum dpm_order dpm_order); 1017 extern const char *device_get_devnode(struct device *dev, 1018 umode_t *mode, kuid_t *uid, kgid_t *gid, 1019 const char **tmp); 1020 1021 static inline bool device_supports_offline(struct device *dev) 1022 { 1023 return dev->bus && dev->bus->offline && dev->bus->online; 1024 } 1025 1026 extern void lock_device_hotplug(void); 1027 extern void unlock_device_hotplug(void); 1028 extern int lock_device_hotplug_sysfs(void); 1029 extern int device_offline(struct device *dev); 1030 extern int device_online(struct device *dev); 1031 extern void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode); 1032 extern void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode); 1033 1034 /* 1035 * Root device objects for grouping under /sys/devices 1036 */ 1037 extern struct device *__root_device_register(const char *name, 1038 struct module *owner); 1039 1040 /* This is a macro to avoid include problems with THIS_MODULE */ 1041 #define root_device_register(name) \ 1042 __root_device_register(name, THIS_MODULE) 1043 1044 extern void root_device_unregister(struct device *root); 1045 1046 static inline void *dev_get_platdata(const struct device *dev) 1047 { 1048 return dev->platform_data; 1049 } 1050 1051 /* 1052 * Manual binding of a device to driver. See drivers/base/bus.c 1053 * for information on use. 1054 */ 1055 extern int __must_check device_bind_driver(struct device *dev); 1056 extern void device_release_driver(struct device *dev); 1057 extern int __must_check device_attach(struct device *dev); 1058 extern int __must_check driver_attach(struct device_driver *drv); 1059 extern void device_initial_probe(struct device *dev); 1060 extern int __must_check device_reprobe(struct device *dev); 1061 1062 extern bool device_is_bound(struct device *dev); 1063 1064 /* 1065 * Easy functions for dynamically creating devices on the fly 1066 */ 1067 extern __printf(5, 0) 1068 struct device *device_create_vargs(struct class *cls, struct device *parent, 1069 dev_t devt, void *drvdata, 1070 const char *fmt, va_list vargs); 1071 extern __printf(5, 6) 1072 struct device *device_create(struct class *cls, struct device *parent, 1073 dev_t devt, void *drvdata, 1074 const char *fmt, ...); 1075 extern __printf(6, 7) 1076 struct device *device_create_with_groups(struct class *cls, 1077 struct device *parent, dev_t devt, void *drvdata, 1078 const struct attribute_group **groups, 1079 const char *fmt, ...); 1080 extern void device_destroy(struct class *cls, dev_t devt); 1081 1082 /* 1083 * Platform "fixup" functions - allow the platform to have their say 1084 * about devices and actions that the general device layer doesn't 1085 * know about. 1086 */ 1087 /* Notify platform of device discovery */ 1088 extern int (*platform_notify)(struct device *dev); 1089 1090 extern int (*platform_notify_remove)(struct device *dev); 1091 1092 1093 /* 1094 * get_device - atomically increment the reference count for the device. 1095 * 1096 */ 1097 extern struct device *get_device(struct device *dev); 1098 extern void put_device(struct device *dev); 1099 1100 #ifdef CONFIG_DEVTMPFS 1101 extern int devtmpfs_create_node(struct device *dev); 1102 extern int devtmpfs_delete_node(struct device *dev); 1103 extern int devtmpfs_mount(const char *mntdir); 1104 #else 1105 static inline int devtmpfs_create_node(struct device *dev) { return 0; } 1106 static inline int devtmpfs_delete_node(struct device *dev) { return 0; } 1107 static inline int devtmpfs_mount(const char *mountpoint) { return 0; } 1108 #endif 1109 1110 /* drivers/base/power/shutdown.c */ 1111 extern void device_shutdown(void); 1112 1113 /* debugging and troubleshooting/diagnostic helpers. */ 1114 extern const char *dev_driver_string(const struct device *dev); 1115 1116 1117 #ifdef CONFIG_PRINTK 1118 1119 extern __printf(3, 0) 1120 int dev_vprintk_emit(int level, const struct device *dev, 1121 const char *fmt, va_list args); 1122 extern __printf(3, 4) 1123 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...); 1124 1125 extern __printf(3, 4) 1126 void dev_printk(const char *level, const struct device *dev, 1127 const char *fmt, ...); 1128 extern __printf(2, 3) 1129 void dev_emerg(const struct device *dev, const char *fmt, ...); 1130 extern __printf(2, 3) 1131 void dev_alert(const struct device *dev, const char *fmt, ...); 1132 extern __printf(2, 3) 1133 void dev_crit(const struct device *dev, const char *fmt, ...); 1134 extern __printf(2, 3) 1135 void dev_err(const struct device *dev, const char *fmt, ...); 1136 extern __printf(2, 3) 1137 void dev_warn(const struct device *dev, const char *fmt, ...); 1138 extern __printf(2, 3) 1139 void dev_notice(const struct device *dev, const char *fmt, ...); 1140 extern __printf(2, 3) 1141 void _dev_info(const struct device *dev, const char *fmt, ...); 1142 1143 #else 1144 1145 static inline __printf(3, 0) 1146 int dev_vprintk_emit(int level, const struct device *dev, 1147 const char *fmt, va_list args) 1148 { return 0; } 1149 static inline __printf(3, 4) 1150 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...) 1151 { return 0; } 1152 1153 static inline void __dev_printk(const char *level, const struct device *dev, 1154 struct va_format *vaf) 1155 {} 1156 static inline __printf(3, 4) 1157 void dev_printk(const char *level, const struct device *dev, 1158 const char *fmt, ...) 1159 {} 1160 1161 static inline __printf(2, 3) 1162 void dev_emerg(const struct device *dev, const char *fmt, ...) 1163 {} 1164 static inline __printf(2, 3) 1165 void dev_crit(const struct device *dev, const char *fmt, ...) 1166 {} 1167 static inline __printf(2, 3) 1168 void dev_alert(const struct device *dev, const char *fmt, ...) 1169 {} 1170 static inline __printf(2, 3) 1171 void dev_err(const struct device *dev, const char *fmt, ...) 1172 {} 1173 static inline __printf(2, 3) 1174 void dev_warn(const struct device *dev, const char *fmt, ...) 1175 {} 1176 static inline __printf(2, 3) 1177 void dev_notice(const struct device *dev, const char *fmt, ...) 1178 {} 1179 static inline __printf(2, 3) 1180 void _dev_info(const struct device *dev, const char *fmt, ...) 1181 {} 1182 1183 #endif 1184 1185 /* 1186 * Stupid hackaround for existing uses of non-printk uses dev_info 1187 * 1188 * Note that the definition of dev_info below is actually _dev_info 1189 * and a macro is used to avoid redefining dev_info 1190 */ 1191 1192 #define dev_info(dev, fmt, arg...) _dev_info(dev, fmt, ##arg) 1193 1194 #if defined(CONFIG_DYNAMIC_DEBUG) 1195 #define dev_dbg(dev, format, ...) \ 1196 do { \ 1197 dynamic_dev_dbg(dev, format, ##__VA_ARGS__); \ 1198 } while (0) 1199 #elif defined(DEBUG) 1200 #define dev_dbg(dev, format, arg...) \ 1201 dev_printk(KERN_DEBUG, dev, format, ##arg) 1202 #else 1203 #define dev_dbg(dev, format, arg...) \ 1204 ({ \ 1205 if (0) \ 1206 dev_printk(KERN_DEBUG, dev, format, ##arg); \ 1207 }) 1208 #endif 1209 1210 #ifdef CONFIG_PRINTK 1211 #define dev_level_once(dev_level, dev, fmt, ...) \ 1212 do { \ 1213 static bool __print_once __read_mostly; \ 1214 \ 1215 if (!__print_once) { \ 1216 __print_once = true; \ 1217 dev_level(dev, fmt, ##__VA_ARGS__); \ 1218 } \ 1219 } while (0) 1220 #else 1221 #define dev_level_once(dev_level, dev, fmt, ...) \ 1222 do { \ 1223 if (0) \ 1224 dev_level(dev, fmt, ##__VA_ARGS__); \ 1225 } while (0) 1226 #endif 1227 1228 #define dev_emerg_once(dev, fmt, ...) \ 1229 dev_level_once(dev_emerg, dev, fmt, ##__VA_ARGS__) 1230 #define dev_alert_once(dev, fmt, ...) \ 1231 dev_level_once(dev_alert, dev, fmt, ##__VA_ARGS__) 1232 #define dev_crit_once(dev, fmt, ...) \ 1233 dev_level_once(dev_crit, dev, fmt, ##__VA_ARGS__) 1234 #define dev_err_once(dev, fmt, ...) \ 1235 dev_level_once(dev_err, dev, fmt, ##__VA_ARGS__) 1236 #define dev_warn_once(dev, fmt, ...) \ 1237 dev_level_once(dev_warn, dev, fmt, ##__VA_ARGS__) 1238 #define dev_notice_once(dev, fmt, ...) \ 1239 dev_level_once(dev_notice, dev, fmt, ##__VA_ARGS__) 1240 #define dev_info_once(dev, fmt, ...) \ 1241 dev_level_once(dev_info, dev, fmt, ##__VA_ARGS__) 1242 #define dev_dbg_once(dev, fmt, ...) \ 1243 dev_level_once(dev_dbg, dev, fmt, ##__VA_ARGS__) 1244 1245 #define dev_level_ratelimited(dev_level, dev, fmt, ...) \ 1246 do { \ 1247 static DEFINE_RATELIMIT_STATE(_rs, \ 1248 DEFAULT_RATELIMIT_INTERVAL, \ 1249 DEFAULT_RATELIMIT_BURST); \ 1250 if (__ratelimit(&_rs)) \ 1251 dev_level(dev, fmt, ##__VA_ARGS__); \ 1252 } while (0) 1253 1254 #define dev_emerg_ratelimited(dev, fmt, ...) \ 1255 dev_level_ratelimited(dev_emerg, dev, fmt, ##__VA_ARGS__) 1256 #define dev_alert_ratelimited(dev, fmt, ...) \ 1257 dev_level_ratelimited(dev_alert, dev, fmt, ##__VA_ARGS__) 1258 #define dev_crit_ratelimited(dev, fmt, ...) \ 1259 dev_level_ratelimited(dev_crit, dev, fmt, ##__VA_ARGS__) 1260 #define dev_err_ratelimited(dev, fmt, ...) \ 1261 dev_level_ratelimited(dev_err, dev, fmt, ##__VA_ARGS__) 1262 #define dev_warn_ratelimited(dev, fmt, ...) \ 1263 dev_level_ratelimited(dev_warn, dev, fmt, ##__VA_ARGS__) 1264 #define dev_notice_ratelimited(dev, fmt, ...) \ 1265 dev_level_ratelimited(dev_notice, dev, fmt, ##__VA_ARGS__) 1266 #define dev_info_ratelimited(dev, fmt, ...) \ 1267 dev_level_ratelimited(dev_info, dev, fmt, ##__VA_ARGS__) 1268 #if defined(CONFIG_DYNAMIC_DEBUG) 1269 /* descriptor check is first to prevent flooding with "callbacks suppressed" */ 1270 #define dev_dbg_ratelimited(dev, fmt, ...) \ 1271 do { \ 1272 static DEFINE_RATELIMIT_STATE(_rs, \ 1273 DEFAULT_RATELIMIT_INTERVAL, \ 1274 DEFAULT_RATELIMIT_BURST); \ 1275 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt); \ 1276 if (unlikely(descriptor.flags & _DPRINTK_FLAGS_PRINT) && \ 1277 __ratelimit(&_rs)) \ 1278 __dynamic_dev_dbg(&descriptor, dev, fmt, \ 1279 ##__VA_ARGS__); \ 1280 } while (0) 1281 #elif defined(DEBUG) 1282 #define dev_dbg_ratelimited(dev, fmt, ...) \ 1283 do { \ 1284 static DEFINE_RATELIMIT_STATE(_rs, \ 1285 DEFAULT_RATELIMIT_INTERVAL, \ 1286 DEFAULT_RATELIMIT_BURST); \ 1287 if (__ratelimit(&_rs)) \ 1288 dev_printk(KERN_DEBUG, dev, fmt, ##__VA_ARGS__); \ 1289 } while (0) 1290 #else 1291 #define dev_dbg_ratelimited(dev, fmt, ...) \ 1292 do { \ 1293 if (0) \ 1294 dev_printk(KERN_DEBUG, dev, fmt, ##__VA_ARGS__); \ 1295 } while (0) 1296 #endif 1297 1298 #ifdef VERBOSE_DEBUG 1299 #define dev_vdbg dev_dbg 1300 #else 1301 #define dev_vdbg(dev, format, arg...) \ 1302 ({ \ 1303 if (0) \ 1304 dev_printk(KERN_DEBUG, dev, format, ##arg); \ 1305 }) 1306 #endif 1307 1308 /* 1309 * dev_WARN*() acts like dev_printk(), but with the key difference of 1310 * using WARN/WARN_ONCE to include file/line information and a backtrace. 1311 */ 1312 #define dev_WARN(dev, format, arg...) \ 1313 WARN(1, "%s %s: " format, dev_driver_string(dev), dev_name(dev), ## arg); 1314 1315 #define dev_WARN_ONCE(dev, condition, format, arg...) \ 1316 WARN_ONCE(condition, "%s %s: " format, \ 1317 dev_driver_string(dev), dev_name(dev), ## arg) 1318 1319 /* Create alias, so I can be autoloaded. */ 1320 #define MODULE_ALIAS_CHARDEV(major,minor) \ 1321 MODULE_ALIAS("char-major-" __stringify(major) "-" __stringify(minor)) 1322 #define MODULE_ALIAS_CHARDEV_MAJOR(major) \ 1323 MODULE_ALIAS("char-major-" __stringify(major) "-*") 1324 1325 #ifdef CONFIG_SYSFS_DEPRECATED 1326 extern long sysfs_deprecated; 1327 #else 1328 #define sysfs_deprecated 0 1329 #endif 1330 1331 /** 1332 * module_driver() - Helper macro for drivers that don't do anything 1333 * special in module init/exit. This eliminates a lot of boilerplate. 1334 * Each module may only use this macro once, and calling it replaces 1335 * module_init() and module_exit(). 1336 * 1337 * @__driver: driver name 1338 * @__register: register function for this driver type 1339 * @__unregister: unregister function for this driver type 1340 * @...: Additional arguments to be passed to __register and __unregister. 1341 * 1342 * Use this macro to construct bus specific macros for registering 1343 * drivers, and do not use it on its own. 1344 */ 1345 #define module_driver(__driver, __register, __unregister, ...) \ 1346 static int __init __driver##_init(void) \ 1347 { \ 1348 return __register(&(__driver) , ##__VA_ARGS__); \ 1349 } \ 1350 module_init(__driver##_init); \ 1351 static void __exit __driver##_exit(void) \ 1352 { \ 1353 __unregister(&(__driver) , ##__VA_ARGS__); \ 1354 } \ 1355 module_exit(__driver##_exit); 1356 1357 /** 1358 * builtin_driver() - Helper macro for drivers that don't do anything 1359 * special in init and have no exit. This eliminates some boilerplate. 1360 * Each driver may only use this macro once, and calling it replaces 1361 * device_initcall (or in some cases, the legacy __initcall). This is 1362 * meant to be a direct parallel of module_driver() above but without 1363 * the __exit stuff that is not used for builtin cases. 1364 * 1365 * @__driver: driver name 1366 * @__register: register function for this driver type 1367 * @...: Additional arguments to be passed to __register 1368 * 1369 * Use this macro to construct bus specific macros for registering 1370 * drivers, and do not use it on its own. 1371 */ 1372 #define builtin_driver(__driver, __register, ...) \ 1373 static int __init __driver##_init(void) \ 1374 { \ 1375 return __register(&(__driver) , ##__VA_ARGS__); \ 1376 } \ 1377 device_initcall(__driver##_init); 1378 1379 #endif /* _DEVICE_H_ */
1 #ifndef _LINUX_DMA_MAPPING_H 2 #define _LINUX_DMA_MAPPING_H 3 4 #include <linux/sizes.h> 5 #include <linux/string.h> 6 #include <linux/device.h> 7 #include <linux/err.h> 8 #include <linux/dma-debug.h> 9 #include <linux/dma-direction.h> 10 #include <linux/scatterlist.h> 11 #include <linux/kmemcheck.h> 12 #include <linux/bug.h> 13 14 /** 15 * List of possible attributes associated with a DMA mapping. The semantics 16 * of each attribute should be defined in Documentation/DMA-attributes.txt. 17 * 18 * DMA_ATTR_WRITE_BARRIER: DMA to a memory region with this attribute 19 * forces all pending DMA writes to complete. 20 */ 21 #define DMA_ATTR_WRITE_BARRIER (1UL << 0) 22 /* 23 * DMA_ATTR_WEAK_ORDERING: Specifies that reads and writes to the mapping 24 * may be weakly ordered, that is that reads and writes may pass each other. 25 */ 26 #define DMA_ATTR_WEAK_ORDERING (1UL << 1) 27 /* 28 * DMA_ATTR_WRITE_COMBINE: Specifies that writes to the mapping may be 29 * buffered to improve performance. 30 */ 31 #define DMA_ATTR_WRITE_COMBINE (1UL << 2) 32 /* 33 * DMA_ATTR_NON_CONSISTENT: Lets the platform to choose to return either 34 * consistent or non-consistent memory as it sees fit. 35 */ 36 #define DMA_ATTR_NON_CONSISTENT (1UL << 3) 37 /* 38 * DMA_ATTR_NO_KERNEL_MAPPING: Lets the platform to avoid creating a kernel 39 * virtual mapping for the allocated buffer. 40 */ 41 #define DMA_ATTR_NO_KERNEL_MAPPING (1UL << 4) 42 /* 43 * DMA_ATTR_SKIP_CPU_SYNC: Allows platform code to skip synchronization of 44 * the CPU cache for the given buffer assuming that it has been already 45 * transferred to 'device' domain. 46 */ 47 #define DMA_ATTR_SKIP_CPU_SYNC (1UL << 5) 48 /* 49 * DMA_ATTR_FORCE_CONTIGUOUS: Forces contiguous allocation of the buffer 50 * in physical memory. 51 */ 52 #define DMA_ATTR_FORCE_CONTIGUOUS (1UL << 6) 53 /* 54 * DMA_ATTR_ALLOC_SINGLE_PAGES: This is a hint to the DMA-mapping subsystem 55 * that it's probably not worth the time to try to allocate memory to in a way 56 * that gives better TLB efficiency. 57 */ 58 #define DMA_ATTR_ALLOC_SINGLE_PAGES (1UL << 7) 59 60 /* 61 * A dma_addr_t can hold any valid DMA or bus address for the platform. 62 * It can be given to a device to use as a DMA source or target. A CPU cannot 63 * reference a dma_addr_t directly because there may be translation between 64 * its physical address space and the bus address space. 65 */ 66 struct dma_map_ops { 67 void* (*alloc)(struct device *dev, size_t size, 68 dma_addr_t *dma_handle, gfp_t gfp, 69 unsigned long attrs); 70 void (*free)(struct device *dev, size_t size, 71 void *vaddr, dma_addr_t dma_handle, 72 unsigned long attrs); 73 int (*mmap)(struct device *, struct vm_area_struct *, 74 void *, dma_addr_t, size_t, 75 unsigned long attrs); 76 77 int (*get_sgtable)(struct device *dev, struct sg_table *sgt, void *, 78 dma_addr_t, size_t, unsigned long attrs); 79 80 dma_addr_t (*map_page)(struct device *dev, struct page *page, 81 unsigned long offset, size_t size, 82 enum dma_data_direction dir, 83 unsigned long attrs); 84 void (*unmap_page)(struct device *dev, dma_addr_t dma_handle, 85 size_t size, enum dma_data_direction dir, 86 unsigned long attrs); 87 /* 88 * map_sg returns 0 on error and a value > 0 on success. 89 * It should never return a value < 0. 90 */ 91 int (*map_sg)(struct device *dev, struct scatterlist *sg, 92 int nents, enum dma_data_direction dir, 93 unsigned long attrs); 94 void (*unmap_sg)(struct device *dev, 95 struct scatterlist *sg, int nents, 96 enum dma_data_direction dir, 97 unsigned long attrs); 98 void (*sync_single_for_cpu)(struct device *dev, 99 dma_addr_t dma_handle, size_t size, 100 enum dma_data_direction dir); 101 void (*sync_single_for_device)(struct device *dev, 102 dma_addr_t dma_handle, size_t size, 103 enum dma_data_direction dir); 104 void (*sync_sg_for_cpu)(struct device *dev, 105 struct scatterlist *sg, int nents, 106 enum dma_data_direction dir); 107 void (*sync_sg_for_device)(struct device *dev, 108 struct scatterlist *sg, int nents, 109 enum dma_data_direction dir); 110 int (*mapping_error)(struct device *dev, dma_addr_t dma_addr); 111 int (*dma_supported)(struct device *dev, u64 mask); 112 int (*set_dma_mask)(struct device *dev, u64 mask); 113 #ifdef ARCH_HAS_DMA_GET_REQUIRED_MASK 114 u64 (*get_required_mask)(struct device *dev); 115 #endif 116 int is_phys; 117 }; 118 119 extern struct dma_map_ops dma_noop_ops; 120 121 #define DMA_BIT_MASK(n) (((n) == 64) ? ~0ULL : ((1ULL<<(n))-1)) 122 123 #define DMA_MASK_NONE 0x0ULL 124 125 static inline int valid_dma_direction(int dma_direction) 126 { 127 return ((dma_direction == DMA_BIDIRECTIONAL) || 128 (dma_direction == DMA_TO_DEVICE) || 129 (dma_direction == DMA_FROM_DEVICE)); 130 } 131 132 static inline int is_device_dma_capable(struct device *dev) 133 { 134 return dev->dma_mask != NULL && *dev->dma_mask != DMA_MASK_NONE; 135 } 136 137 #ifdef CONFIG_HAVE_GENERIC_DMA_COHERENT 138 /* 139 * These three functions are only for dma allocator. 140 * Don't use them in device drivers. 141 */ 142 int dma_alloc_from_coherent(struct device *dev, ssize_t size, 143 dma_addr_t *dma_handle, void **ret); 144 int dma_release_from_coherent(struct device *dev, int order, void *vaddr); 145 146 int dma_mmap_from_coherent(struct device *dev, struct vm_area_struct *vma, 147 void *cpu_addr, size_t size, int *ret); 148 #else 149 #define dma_alloc_from_coherent(dev, size, handle, ret) (0) 150 #define dma_release_from_coherent(dev, order, vaddr) (0) 151 #define dma_mmap_from_coherent(dev, vma, vaddr, order, ret) (0) 152 #endif /* CONFIG_HAVE_GENERIC_DMA_COHERENT */ 153 154 #ifdef CONFIG_HAS_DMA 155 #include <asm/dma-mapping.h> 156 #else 157 /* 158 * Define the dma api to allow compilation but not linking of 159 * dma dependent code. Code that depends on the dma-mapping 160 * API needs to set 'depends on HAS_DMA' in its Kconfig 161 */ 162 extern struct dma_map_ops bad_dma_ops; 163 static inline struct dma_map_ops *get_dma_ops(struct device *dev) 164 { 165 return &bad_dma_ops; 166 } 167 #endif 168 169 static inline dma_addr_t dma_map_single_attrs(struct device *dev, void *ptr, 170 size_t size, 171 enum dma_data_direction dir, 172 unsigned long attrs) 173 { 174 struct dma_map_ops *ops = get_dma_ops(dev); 175 dma_addr_t addr; 176 177 kmemcheck_mark_initialized(ptr, size); 178 BUG_ON(!valid_dma_direction(dir)); 179 addr = ops->map_page(dev, virt_to_page(ptr), 180 offset_in_page(ptr), size, 181 dir, attrs); 182 debug_dma_map_page(dev, virt_to_page(ptr), 183 offset_in_page(ptr), size, 184 dir, addr, true); 185 return addr; 186 } 187 188 static inline void dma_unmap_single_attrs(struct device *dev, dma_addr_t addr, 189 size_t size, 190 enum dma_data_direction dir, 191 unsigned long attrs) 192 { 193 struct dma_map_ops *ops = get_dma_ops(dev); 194 195 BUG_ON(!valid_dma_direction(dir)); 196 if (ops->unmap_page) 197 ops->unmap_page(dev, addr, size, dir, attrs); 198 debug_dma_unmap_page(dev, addr, size, dir, true); 199 } 200 201 /* 202 * dma_maps_sg_attrs returns 0 on error and > 0 on success. 203 * It should never return a value < 0. 204 */ 205 static inline int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg, 206 int nents, enum dma_data_direction dir, 207 unsigned long attrs) 208 { 209 struct dma_map_ops *ops = get_dma_ops(dev); 210 int i, ents; 211 struct scatterlist *s; 212 213 for_each_sg(sg, s, nents, i) 214 kmemcheck_mark_initialized(sg_virt(s), s->length); 215 BUG_ON(!valid_dma_direction(dir)); 216 ents = ops->map_sg(dev, sg, nents, dir, attrs); 217 BUG_ON(ents < 0); 218 debug_dma_map_sg(dev, sg, nents, ents, dir); 219 220 return ents; 221 } 222 223 static inline void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg, 224 int nents, enum dma_data_direction dir, 225 unsigned long attrs) 226 { 227 struct dma_map_ops *ops = get_dma_ops(dev); 228 229 BUG_ON(!valid_dma_direction(dir)); 230 debug_dma_unmap_sg(dev, sg, nents, dir); 231 if (ops->unmap_sg) 232 ops->unmap_sg(dev, sg, nents, dir, attrs); 233 } 234 235 static inline dma_addr_t dma_map_page(struct device *dev, struct page *page, 236 size_t offset, size_t size, 237 enum dma_data_direction dir) 238 { 239 struct dma_map_ops *ops = get_dma_ops(dev); 240 dma_addr_t addr; 241 242 kmemcheck_mark_initialized(page_address(page) + offset, size); 243 BUG_ON(!valid_dma_direction(dir)); 244 addr = ops->map_page(dev, page, offset, size, dir, 0); 245 debug_dma_map_page(dev, page, offset, size, dir, addr, false); 246 247 return addr; 248 } 249 250 static inline void dma_unmap_page(struct device *dev, dma_addr_t addr, 251 size_t size, enum dma_data_direction dir) 252 { 253 struct dma_map_ops *ops = get_dma_ops(dev); 254 255 BUG_ON(!valid_dma_direction(dir)); 256 if (ops->unmap_page) 257 ops->unmap_page(dev, addr, size, dir, 0); 258 debug_dma_unmap_page(dev, addr, size, dir, false); 259 } 260 261 static inline void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, 262 size_t size, 263 enum dma_data_direction dir) 264 { 265 struct dma_map_ops *ops = get_dma_ops(dev); 266 267 BUG_ON(!valid_dma_direction(dir)); 268 if (ops->sync_single_for_cpu) 269 ops->sync_single_for_cpu(dev, addr, size, dir); 270 debug_dma_sync_single_for_cpu(dev, addr, size, dir); 271 } 272 273 static inline void dma_sync_single_for_device(struct device *dev, 274 dma_addr_t addr, size_t size, 275 enum dma_data_direction dir) 276 { 277 struct dma_map_ops *ops = get_dma_ops(dev); 278 279 BUG_ON(!valid_dma_direction(dir)); 280 if (ops->sync_single_for_device) 281 ops->sync_single_for_device(dev, addr, size, dir); 282 debug_dma_sync_single_for_device(dev, addr, size, dir); 283 } 284 285 static inline void dma_sync_single_range_for_cpu(struct device *dev, 286 dma_addr_t addr, 287 unsigned long offset, 288 size_t size, 289 enum dma_data_direction dir) 290 { 291 const struct dma_map_ops *ops = get_dma_ops(dev); 292 293 BUG_ON(!valid_dma_direction(dir)); 294 if (ops->sync_single_for_cpu) 295 ops->sync_single_for_cpu(dev, addr + offset, size, dir); 296 debug_dma_sync_single_range_for_cpu(dev, addr, offset, size, dir); 297 } 298 299 static inline void dma_sync_single_range_for_device(struct device *dev, 300 dma_addr_t addr, 301 unsigned long offset, 302 size_t size, 303 enum dma_data_direction dir) 304 { 305 const struct dma_map_ops *ops = get_dma_ops(dev); 306 307 BUG_ON(!valid_dma_direction(dir)); 308 if (ops->sync_single_for_device) 309 ops->sync_single_for_device(dev, addr + offset, size, dir); 310 debug_dma_sync_single_range_for_device(dev, addr, offset, size, dir); 311 } 312 313 static inline void 314 dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 315 int nelems, enum dma_data_direction dir) 316 { 317 struct dma_map_ops *ops = get_dma_ops(dev); 318 319 BUG_ON(!valid_dma_direction(dir)); 320 if (ops->sync_sg_for_cpu) 321 ops->sync_sg_for_cpu(dev, sg, nelems, dir); 322 debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir); 323 } 324 325 static inline void 326 dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 327 int nelems, enum dma_data_direction dir) 328 { 329 struct dma_map_ops *ops = get_dma_ops(dev); 330 331 BUG_ON(!valid_dma_direction(dir)); 332 if (ops->sync_sg_for_device) 333 ops->sync_sg_for_device(dev, sg, nelems, dir); 334 debug_dma_sync_sg_for_device(dev, sg, nelems, dir); 335 336 } 337 338 #define dma_map_single(d, a, s, r) dma_map_single_attrs(d, a, s, r, 0) 339 #define dma_unmap_single(d, a, s, r) dma_unmap_single_attrs(d, a, s, r, 0) 340 #define dma_map_sg(d, s, n, r) dma_map_sg_attrs(d, s, n, r, 0) 341 #define dma_unmap_sg(d, s, n, r) dma_unmap_sg_attrs(d, s, n, r, 0) 342 343 extern int dma_common_mmap(struct device *dev, struct vm_area_struct *vma, 344 void *cpu_addr, dma_addr_t dma_addr, size_t size); 345 346 void *dma_common_contiguous_remap(struct page *page, size_t size, 347 unsigned long vm_flags, 348 pgprot_t prot, const void *caller); 349 350 void *dma_common_pages_remap(struct page **pages, size_t size, 351 unsigned long vm_flags, pgprot_t prot, 352 const void *caller); 353 void dma_common_free_remap(void *cpu_addr, size_t size, unsigned long vm_flags); 354 355 /** 356 * dma_mmap_attrs - map a coherent DMA allocation into user space 357 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices 358 * @vma: vm_area_struct describing requested user mapping 359 * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs 360 * @handle: device-view address returned from dma_alloc_attrs 361 * @size: size of memory originally requested in dma_alloc_attrs 362 * @attrs: attributes of mapping properties requested in dma_alloc_attrs 363 * 364 * Map a coherent DMA buffer previously allocated by dma_alloc_attrs 365 * into user space. The coherent DMA buffer must not be freed by the 366 * driver until the user space mapping has been released. 367 */ 368 static inline int 369 dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma, void *cpu_addr, 370 dma_addr_t dma_addr, size_t size, unsigned long attrs) 371 { 372 struct dma_map_ops *ops = get_dma_ops(dev); 373 BUG_ON(!ops); 374 if (ops->mmap) 375 return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs); 376 return dma_common_mmap(dev, vma, cpu_addr, dma_addr, size); 377 } 378 379 #define dma_mmap_coherent(d, v, c, h, s) dma_mmap_attrs(d, v, c, h, s, 0) 380 381 int 382 dma_common_get_sgtable(struct device *dev, struct sg_table *sgt, 383 void *cpu_addr, dma_addr_t dma_addr, size_t size); 384 385 static inline int 386 dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt, void *cpu_addr, 387 dma_addr_t dma_addr, size_t size, 388 unsigned long attrs) 389 { 390 struct dma_map_ops *ops = get_dma_ops(dev); 391 BUG_ON(!ops); 392 if (ops->get_sgtable) 393 return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, 394 attrs); 395 return dma_common_get_sgtable(dev, sgt, cpu_addr, dma_addr, size); 396 } 397 398 #define dma_get_sgtable(d, t, v, h, s) dma_get_sgtable_attrs(d, t, v, h, s, 0) 399 400 #ifndef arch_dma_alloc_attrs 401 #define arch_dma_alloc_attrs(dev, flag) (true) 402 #endif 403 404 static inline void *dma_alloc_attrs(struct device *dev, size_t size, 405 dma_addr_t *dma_handle, gfp_t flag, 406 unsigned long attrs) 407 { 408 struct dma_map_ops *ops = get_dma_ops(dev); 409 void *cpu_addr; 410 411 BUG_ON(!ops); 412 413 if (dma_alloc_from_coherent(dev, size, dma_handle, &cpu_addr)) 414 return cpu_addr; 415 416 if (!arch_dma_alloc_attrs(&dev, &flag)) 417 return NULL; 418 if (!ops->alloc) 419 return NULL; 420 421 cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs); 422 debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr); 423 return cpu_addr; 424 } 425 426 static inline void dma_free_attrs(struct device *dev, size_t size, 427 void *cpu_addr, dma_addr_t dma_handle, 428 unsigned long attrs) 429 { 430 struct dma_map_ops *ops = get_dma_ops(dev); 431 432 BUG_ON(!ops); 433 WARN_ON(irqs_disabled()); 434 435 if (dma_release_from_coherent(dev, get_order(size), cpu_addr)) 436 return; 437 438 if (!ops->free || !cpu_addr) 439 return; 440 441 debug_dma_free_coherent(dev, size, cpu_addr, dma_handle); 442 ops->free(dev, size, cpu_addr, dma_handle, attrs); 443 } 444 445 static inline void *dma_alloc_coherent(struct device *dev, size_t size, 446 dma_addr_t *dma_handle, gfp_t flag) 447 { 448 return dma_alloc_attrs(dev, size, dma_handle, flag, 0); 449 } 450 451 static inline void dma_free_coherent(struct device *dev, size_t size, 452 void *cpu_addr, dma_addr_t dma_handle) 453 { 454 return dma_free_attrs(dev, size, cpu_addr, dma_handle, 0); 455 } 456 457 static inline void *dma_alloc_noncoherent(struct device *dev, size_t size, 458 dma_addr_t *dma_handle, gfp_t gfp) 459 { 460 return dma_alloc_attrs(dev, size, dma_handle, gfp, 461 DMA_ATTR_NON_CONSISTENT); 462 } 463 464 static inline void dma_free_noncoherent(struct device *dev, size_t size, 465 void *cpu_addr, dma_addr_t dma_handle) 466 { 467 dma_free_attrs(dev, size, cpu_addr, dma_handle, 468 DMA_ATTR_NON_CONSISTENT); 469 } 470 471 static inline int dma_mapping_error(struct device *dev, dma_addr_t dma_addr) 472 { 473 debug_dma_mapping_error(dev, dma_addr); 474 475 if (get_dma_ops(dev)->mapping_error) 476 return get_dma_ops(dev)->mapping_error(dev, dma_addr); 477 478 #ifdef DMA_ERROR_CODE 479 return dma_addr == DMA_ERROR_CODE; 480 #else 481 return 0; 482 #endif 483 } 484 485 #ifndef HAVE_ARCH_DMA_SUPPORTED 486 static inline int dma_supported(struct device *dev, u64 mask) 487 { 488 struct dma_map_ops *ops = get_dma_ops(dev); 489 490 if (!ops) 491 return 0; 492 if (!ops->dma_supported) 493 return 1; 494 return ops->dma_supported(dev, mask); 495 } 496 #endif 497 498 #ifndef HAVE_ARCH_DMA_SET_MASK 499 static inline int dma_set_mask(struct device *dev, u64 mask) 500 { 501 struct dma_map_ops *ops = get_dma_ops(dev); 502 503 if (ops->set_dma_mask) 504 return ops->set_dma_mask(dev, mask); 505 506 if (!dev->dma_mask || !dma_supported(dev, mask)) 507 return -EIO; 508 *dev->dma_mask = mask; 509 return 0; 510 } 511 #endif 512 513 static inline u64 dma_get_mask(struct device *dev) 514 { 515 if (dev && dev->dma_mask && *dev->dma_mask) 516 return *dev->dma_mask; 517 return DMA_BIT_MASK(32); 518 } 519 520 #ifdef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK 521 int dma_set_coherent_mask(struct device *dev, u64 mask); 522 #else 523 static inline int dma_set_coherent_mask(struct device *dev, u64 mask) 524 { 525 if (!dma_supported(dev, mask)) 526 return -EIO; 527 dev->coherent_dma_mask = mask; 528 return 0; 529 } 530 #endif 531 532 /* 533 * Set both the DMA mask and the coherent DMA mask to the same thing. 534 * Note that we don't check the return value from dma_set_coherent_mask() 535 * as the DMA API guarantees that the coherent DMA mask can be set to 536 * the same or smaller than the streaming DMA mask. 537 */ 538 static inline int dma_set_mask_and_coherent(struct device *dev, u64 mask) 539 { 540 int rc = dma_set_mask(dev, mask); 541 if (rc == 0) 542 dma_set_coherent_mask(dev, mask); 543 return rc; 544 } 545 546 /* 547 * Similar to the above, except it deals with the case where the device 548 * does not have dev->dma_mask appropriately setup. 549 */ 550 static inline int dma_coerce_mask_and_coherent(struct device *dev, u64 mask) 551 { 552 dev->dma_mask = &dev->coherent_dma_mask; 553 return dma_set_mask_and_coherent(dev, mask); 554 } 555 556 extern u64 dma_get_required_mask(struct device *dev); 557 558 #ifndef arch_setup_dma_ops 559 static inline void arch_setup_dma_ops(struct device *dev, u64 dma_base, 560 u64 size, const struct iommu_ops *iommu, 561 bool coherent) { } 562 #endif 563 564 #ifndef arch_teardown_dma_ops 565 static inline void arch_teardown_dma_ops(struct device *dev) { } 566 #endif 567 568 static inline unsigned int dma_get_max_seg_size(struct device *dev) 569 { 570 if (dev->dma_parms && dev->dma_parms->max_segment_size) 571 return dev->dma_parms->max_segment_size; 572 return SZ_64K; 573 } 574 575 static inline unsigned int dma_set_max_seg_size(struct device *dev, 576 unsigned int size) 577 { 578 if (dev->dma_parms) { 579 dev->dma_parms->max_segment_size = size; 580 return 0; 581 } 582 return -EIO; 583 } 584 585 static inline unsigned long dma_get_seg_boundary(struct device *dev) 586 { 587 if (dev->dma_parms && dev->dma_parms->segment_boundary_mask) 588 return dev->dma_parms->segment_boundary_mask; 589 return DMA_BIT_MASK(32); 590 } 591 592 static inline int dma_set_seg_boundary(struct device *dev, unsigned long mask) 593 { 594 if (dev->dma_parms) { 595 dev->dma_parms->segment_boundary_mask = mask; 596 return 0; 597 } 598 return -EIO; 599 } 600 601 #ifndef dma_max_pfn 602 static inline unsigned long dma_max_pfn(struct device *dev) 603 { 604 return *dev->dma_mask >> PAGE_SHIFT; 605 } 606 #endif 607 608 static inline void *dma_zalloc_coherent(struct device *dev, size_t size, 609 dma_addr_t *dma_handle, gfp_t flag) 610 { 611 void *ret = dma_alloc_coherent(dev, size, dma_handle, 612 flag | __GFP_ZERO); 613 return ret; 614 } 615 616 #ifdef CONFIG_HAS_DMA 617 static inline int dma_get_cache_alignment(void) 618 { 619 #ifdef ARCH_DMA_MINALIGN 620 return ARCH_DMA_MINALIGN; 621 #endif 622 return 1; 623 } 624 #endif 625 626 /* flags for the coherent memory api */ 627 #define DMA_MEMORY_MAP 0x01 628 #define DMA_MEMORY_IO 0x02 629 #define DMA_MEMORY_INCLUDES_CHILDREN 0x04 630 #define DMA_MEMORY_EXCLUSIVE 0x08 631 632 #ifdef CONFIG_HAVE_GENERIC_DMA_COHERENT 633 int dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr, 634 dma_addr_t device_addr, size_t size, int flags); 635 void dma_release_declared_memory(struct device *dev); 636 void *dma_mark_declared_memory_occupied(struct device *dev, 637 dma_addr_t device_addr, size_t size); 638 #else 639 static inline int 640 dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr, 641 dma_addr_t device_addr, size_t size, int flags) 642 { 643 return 0; 644 } 645 646 static inline void 647 dma_release_declared_memory(struct device *dev) 648 { 649 } 650 651 static inline void * 652 dma_mark_declared_memory_occupied(struct device *dev, 653 dma_addr_t device_addr, size_t size) 654 { 655 return ERR_PTR(-EBUSY); 656 } 657 #endif /* CONFIG_HAVE_GENERIC_DMA_COHERENT */ 658 659 /* 660 * Managed DMA API 661 */ 662 extern void *dmam_alloc_coherent(struct device *dev, size_t size, 663 dma_addr_t *dma_handle, gfp_t gfp); 664 extern void dmam_free_coherent(struct device *dev, size_t size, void *vaddr, 665 dma_addr_t dma_handle); 666 extern void *dmam_alloc_noncoherent(struct device *dev, size_t size, 667 dma_addr_t *dma_handle, gfp_t gfp); 668 extern void dmam_free_noncoherent(struct device *dev, size_t size, void *vaddr, 669 dma_addr_t dma_handle); 670 #ifdef CONFIG_HAVE_GENERIC_DMA_COHERENT 671 extern int dmam_declare_coherent_memory(struct device *dev, 672 phys_addr_t phys_addr, 673 dma_addr_t device_addr, size_t size, 674 int flags); 675 extern void dmam_release_declared_memory(struct device *dev); 676 #else /* CONFIG_HAVE_GENERIC_DMA_COHERENT */ 677 static inline int dmam_declare_coherent_memory(struct device *dev, 678 phys_addr_t phys_addr, dma_addr_t device_addr, 679 size_t size, gfp_t gfp) 680 { 681 return 0; 682 } 683 684 static inline void dmam_release_declared_memory(struct device *dev) 685 { 686 } 687 #endif /* CONFIG_HAVE_GENERIC_DMA_COHERENT */ 688 689 static inline void *dma_alloc_wc(struct device *dev, size_t size, 690 dma_addr_t *dma_addr, gfp_t gfp) 691 { 692 return dma_alloc_attrs(dev, size, dma_addr, gfp, 693 DMA_ATTR_WRITE_COMBINE); 694 } 695 #ifndef dma_alloc_writecombine 696 #define dma_alloc_writecombine dma_alloc_wc 697 #endif 698 699 static inline void dma_free_wc(struct device *dev, size_t size, 700 void *cpu_addr, dma_addr_t dma_addr) 701 { 702 return dma_free_attrs(dev, size, cpu_addr, dma_addr, 703 DMA_ATTR_WRITE_COMBINE); 704 } 705 #ifndef dma_free_writecombine 706 #define dma_free_writecombine dma_free_wc 707 #endif 708 709 static inline int dma_mmap_wc(struct device *dev, 710 struct vm_area_struct *vma, 711 void *cpu_addr, dma_addr_t dma_addr, 712 size_t size) 713 { 714 return dma_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, 715 DMA_ATTR_WRITE_COMBINE); 716 } 717 #ifndef dma_mmap_writecombine 718 #define dma_mmap_writecombine dma_mmap_wc 719 #endif 720 721 #ifdef CONFIG_NEED_DMA_MAP_STATE 722 #define DEFINE_DMA_UNMAP_ADDR(ADDR_NAME) dma_addr_t ADDR_NAME 723 #define DEFINE_DMA_UNMAP_LEN(LEN_NAME) __u32 LEN_NAME 724 #define dma_unmap_addr(PTR, ADDR_NAME) ((PTR)->ADDR_NAME) 725 #define dma_unmap_addr_set(PTR, ADDR_NAME, VAL) (((PTR)->ADDR_NAME) = (VAL)) 726 #define dma_unmap_len(PTR, LEN_NAME) ((PTR)->LEN_NAME) 727 #define dma_unmap_len_set(PTR, LEN_NAME, VAL) (((PTR)->LEN_NAME) = (VAL)) 728 #else 729 #define DEFINE_DMA_UNMAP_ADDR(ADDR_NAME) 730 #define DEFINE_DMA_UNMAP_LEN(LEN_NAME) 731 #define dma_unmap_addr(PTR, ADDR_NAME) (0) 732 #define dma_unmap_addr_set(PTR, ADDR_NAME, VAL) do { } while (0) 733 #define dma_unmap_len(PTR, LEN_NAME) (0) 734 #define dma_unmap_len_set(PTR, LEN_NAME, VAL) do { } while (0) 735 #endif 736 737 #endif
1 /* 2 * kref.h - library routines for handling generic reference counted objects 3 * 4 * Copyright (C) 2004 Greg Kroah-Hartman <greg@kroah.com> 5 * Copyright (C) 2004 IBM Corp. 6 * 7 * based on kobject.h which was: 8 * Copyright (C) 2002-2003 Patrick Mochel <mochel@osdl.org> 9 * Copyright (C) 2002-2003 Open Source Development Labs 10 * 11 * This file is released under the GPLv2. 12 * 13 */ 14 15 #ifndef _KREF_H_ 16 #define _KREF_H_ 17 18 #include <linux/bug.h> 19 #include <linux/atomic.h> 20 #include <linux/kernel.h> 21 #include <linux/mutex.h> 22 23 struct kref { 24 atomic_t refcount; 25 }; 26 27 /** 28 * kref_init - initialize object. 29 * @kref: object in question. 30 */ 31 static inline void kref_init(struct kref *kref) 32 { 33 atomic_set(&kref->refcount, 1); 34 } 35 36 /** 37 * kref_get - increment refcount for object. 38 * @kref: object. 39 */ 40 static inline void kref_get(struct kref *kref) 41 { 42 /* If refcount was 0 before incrementing then we have a race 43 * condition when this kref is freeing by some other thread right now. 44 * In this case one should use kref_get_unless_zero() 45 */ 46 WARN_ON_ONCE(atomic_inc_return(&kref->refcount) < 2); 47 } 48 49 /** 50 * kref_sub - subtract a number of refcounts for object. 51 * @kref: object. 52 * @count: Number of recounts to subtract. 53 * @release: pointer to the function that will clean up the object when the 54 * last reference to the object is released. 55 * This pointer is required, and it is not acceptable to pass kfree 56 * in as this function. If the caller does pass kfree to this 57 * function, you will be publicly mocked mercilessly by the kref 58 * maintainer, and anyone else who happens to notice it. You have 59 * been warned. 60 * 61 * Subtract @count from the refcount, and if 0, call release(). 62 * Return 1 if the object was removed, otherwise return 0. Beware, if this 63 * function returns 0, you still can not count on the kref from remaining in 64 * memory. Only use the return value if you want to see if the kref is now 65 * gone, not present. 66 */ 67 static inline int kref_sub(struct kref *kref, unsigned int count, 68 void (*release)(struct kref *kref)) 69 { 70 WARN_ON(release == NULL); 71 72 if (atomic_sub_and_test((int) count, &kref->refcount)) { 73 release(kref); 74 return 1; 75 } 76 return 0; 77 } 78 79 /** 80 * kref_put - decrement refcount for object. 81 * @kref: object. 82 * @release: pointer to the function that will clean up the object when the 83 * last reference to the object is released. 84 * This pointer is required, and it is not acceptable to pass kfree 85 * in as this function. If the caller does pass kfree to this 86 * function, you will be publicly mocked mercilessly by the kref 87 * maintainer, and anyone else who happens to notice it. You have 88 * been warned. 89 * 90 * Decrement the refcount, and if 0, call release(). 91 * Return 1 if the object was removed, otherwise return 0. Beware, if this 92 * function returns 0, you still can not count on the kref from remaining in 93 * memory. Only use the return value if you want to see if the kref is now 94 * gone, not present. 95 */ 96 static inline int kref_put(struct kref *kref, void (*release)(struct kref *kref)) 97 { 98 return kref_sub(kref, 1, release); 99 } 100 101 static inline int kref_put_mutex(struct kref *kref, 102 void (*release)(struct kref *kref), 103 struct mutex *lock) 104 { 105 WARN_ON(release == NULL); 106 if (unlikely(!atomic_add_unless(&kref->refcount, -1, 1))) { 107 mutex_lock(lock); 108 if (unlikely(!atomic_dec_and_test(&kref->refcount))) { 109 mutex_unlock(lock); 110 return 0; 111 } 112 release(kref); 113 return 1; 114 } 115 return 0; 116 } 117 118 /** 119 * kref_get_unless_zero - Increment refcount for object unless it is zero. 120 * @kref: object. 121 * 122 * Return non-zero if the increment succeeded. Otherwise return 0. 123 * 124 * This function is intended to simplify locking around refcounting for 125 * objects that can be looked up from a lookup structure, and which are 126 * removed from that lookup structure in the object destructor. 127 * Operations on such objects require at least a read lock around 128 * lookup + kref_get, and a write lock around kref_put + remove from lookup 129 * structure. Furthermore, RCU implementations become extremely tricky. 130 * With a lookup followed by a kref_get_unless_zero *with return value check* 131 * locking in the kref_put path can be deferred to the actual removal from 132 * the lookup structure and RCU lookups become trivial. 133 */ 134 static inline int __must_check kref_get_unless_zero(struct kref *kref) 135 { 136 return atomic_add_unless(&kref->refcount, 1, 0); 137 } 138 #endif /* _KREF_H_ */
1 #ifndef _LINUX_LIST_H 2 #define _LINUX_LIST_H 3 4 #include <linux/types.h> 5 #include <linux/stddef.h> 6 #include <linux/poison.h> 7 #include <linux/const.h> 8 #include <linux/kernel.h> 9 10 /* 11 * Simple doubly linked list implementation. 12 * 13 * Some of the internal functions ("__xxx") are useful when 14 * manipulating whole lists rather than single entries, as 15 * sometimes we already know the next/prev entries and we can 16 * generate better code by using them directly rather than 17 * using the generic single-entry routines. 18 */ 19 20 #define LIST_HEAD_INIT(name) { &(name), &(name) } 21 22 #define LIST_HEAD(name) \ 23 struct list_head name = LIST_HEAD_INIT(name) 24 25 static inline void INIT_LIST_HEAD(struct list_head *list) 26 { 27 WRITE_ONCE(list->next, list); 28 list->prev = list; 29 } 30 31 /* 32 * Insert a new entry between two known consecutive entries. 33 * 34 * This is only for internal list manipulation where we know 35 * the prev/next entries already! 36 */ 37 #ifndef CONFIG_DEBUG_LIST 38 static inline void __list_add(struct list_head *new, 39 struct list_head *prev, 40 struct list_head *next) 41 { 42 next->prev = new; 43 new->next = next; 44 new->prev = prev; 45 WRITE_ONCE(prev->next, new); 46 } 47 #else 48 extern void __list_add(struct list_head *new, 49 struct list_head *prev, 50 struct list_head *next); 51 #endif 52 53 /** 54 * list_add - add a new entry 55 * @new: new entry to be added 56 * @head: list head to add it after 57 * 58 * Insert a new entry after the specified head. 59 * This is good for implementing stacks. 60 */ 61 static inline void list_add(struct list_head *new, struct list_head *head) 62 { 63 __list_add(new, head, head->next); 64 } 65 66 67 /** 68 * list_add_tail - add a new entry 69 * @new: new entry to be added 70 * @head: list head to add it before 71 * 72 * Insert a new entry before the specified head. 73 * This is useful for implementing queues. 74 */ 75 static inline void list_add_tail(struct list_head *new, struct list_head *head) 76 { 77 __list_add(new, head->prev, head); 78 } 79 80 /* 81 * Delete a list entry by making the prev/next entries 82 * point to each other. 83 * 84 * This is only for internal list manipulation where we know 85 * the prev/next entries already! 86 */ 87 static inline void __list_del(struct list_head * prev, struct list_head * next) 88 { 89 next->prev = prev; 90 WRITE_ONCE(prev->next, next); 91 } 92 93 /** 94 * list_del - deletes entry from list. 95 * @entry: the element to delete from the list. 96 * Note: list_empty() on entry does not return true after this, the entry is 97 * in an undefined state. 98 */ 99 #ifndef CONFIG_DEBUG_LIST 100 static inline void __list_del_entry(struct list_head *entry) 101 { 102 __list_del(entry->prev, entry->next); 103 } 104 105 static inline void list_del(struct list_head *entry) 106 { 107 __list_del(entry->prev, entry->next); 108 entry->next = LIST_POISON1; 109 entry->prev = LIST_POISON2; 110 } 111 #else 112 extern void __list_del_entry(struct list_head *entry); 113 extern void list_del(struct list_head *entry); 114 #endif 115 116 /** 117 * list_replace - replace old entry by new one 118 * @old : the element to be replaced 119 * @new : the new element to insert 120 * 121 * If @old was empty, it will be overwritten. 122 */ 123 static inline void list_replace(struct list_head *old, 124 struct list_head *new) 125 { 126 new->next = old->next; 127 new->next->prev = new; 128 new->prev = old->prev; 129 new->prev->next = new; 130 } 131 132 static inline void list_replace_init(struct list_head *old, 133 struct list_head *new) 134 { 135 list_replace(old, new); 136 INIT_LIST_HEAD(old); 137 } 138 139 /** 140 * list_del_init - deletes entry from list and reinitialize it. 141 * @entry: the element to delete from the list. 142 */ 143 static inline void list_del_init(struct list_head *entry) 144 { 145 __list_del_entry(entry); 146 INIT_LIST_HEAD(entry); 147 } 148 149 /** 150 * list_move - delete from one list and add as another's head 151 * @list: the entry to move 152 * @head: the head that will precede our entry 153 */ 154 static inline void list_move(struct list_head *list, struct list_head *head) 155 { 156 __list_del_entry(list); 157 list_add(list, head); 158 } 159 160 /** 161 * list_move_tail - delete from one list and add as another's tail 162 * @list: the entry to move 163 * @head: the head that will follow our entry 164 */ 165 static inline void list_move_tail(struct list_head *list, 166 struct list_head *head) 167 { 168 __list_del_entry(list); 169 list_add_tail(list, head); 170 } 171 172 /** 173 * list_is_last - tests whether @list is the last entry in list @head 174 * @list: the entry to test 175 * @head: the head of the list 176 */ 177 static inline int list_is_last(const struct list_head *list, 178 const struct list_head *head) 179 { 180 return list->next == head; 181 } 182 183 /** 184 * list_empty - tests whether a list is empty 185 * @head: the list to test. 186 */ 187 static inline int list_empty(const struct list_head *head) 188 { 189 return READ_ONCE(head->next) == head; 190 } 191 192 /** 193 * list_empty_careful - tests whether a list is empty and not being modified 194 * @head: the list to test 195 * 196 * Description: 197 * tests whether a list is empty _and_ checks that no other CPU might be 198 * in the process of modifying either member (next or prev) 199 * 200 * NOTE: using list_empty_careful() without synchronization 201 * can only be safe if the only activity that can happen 202 * to the list entry is list_del_init(). Eg. it cannot be used 203 * if another CPU could re-list_add() it. 204 */ 205 static inline int list_empty_careful(const struct list_head *head) 206 { 207 struct list_head *next = head->next; 208 return (next == head) && (next == head->prev); 209 } 210 211 /** 212 * list_rotate_left - rotate the list to the left 213 * @head: the head of the list 214 */ 215 static inline void list_rotate_left(struct list_head *head) 216 { 217 struct list_head *first; 218 219 if (!list_empty(head)) { 220 first = head->next; 221 list_move_tail(first, head); 222 } 223 } 224 225 /** 226 * list_is_singular - tests whether a list has just one entry. 227 * @head: the list to test. 228 */ 229 static inline int list_is_singular(const struct list_head *head) 230 { 231 return !list_empty(head) && (head->next == head->prev); 232 } 233 234 static inline void __list_cut_position(struct list_head *list, 235 struct list_head *head, struct list_head *entry) 236 { 237 struct list_head *new_first = entry->next; 238 list->next = head->next; 239 list->next->prev = list; 240 list->prev = entry; 241 entry->next = list; 242 head->next = new_first; 243 new_first->prev = head; 244 } 245 246 /** 247 * list_cut_position - cut a list into two 248 * @list: a new list to add all removed entries 249 * @head: a list with entries 250 * @entry: an entry within head, could be the head itself 251 * and if so we won't cut the list 252 * 253 * This helper moves the initial part of @head, up to and 254 * including @entry, from @head to @list. You should 255 * pass on @entry an element you know is on @head. @list 256 * should be an empty list or a list you do not care about 257 * losing its data. 258 * 259 */ 260 static inline void list_cut_position(struct list_head *list, 261 struct list_head *head, struct list_head *entry) 262 { 263 if (list_empty(head)) 264 return; 265 if (list_is_singular(head) && 266 (head->next != entry && head != entry)) 267 return; 268 if (entry == head) 269 INIT_LIST_HEAD(list); 270 else 271 __list_cut_position(list, head, entry); 272 } 273 274 static inline void __list_splice(const struct list_head *list, 275 struct list_head *prev, 276 struct list_head *next) 277 { 278 struct list_head *first = list->next; 279 struct list_head *last = list->prev; 280 281 first->prev = prev; 282 prev->next = first; 283 284 last->next = next; 285 next->prev = last; 286 } 287 288 /** 289 * list_splice - join two lists, this is designed for stacks 290 * @list: the new list to add. 291 * @head: the place to add it in the first list. 292 */ 293 static inline void list_splice(const struct list_head *list, 294 struct list_head *head) 295 { 296 if (!list_empty(list)) 297 __list_splice(list, head, head->next); 298 } 299 300 /** 301 * list_splice_tail - join two lists, each list being a queue 302 * @list: the new list to add. 303 * @head: the place to add it in the first list. 304 */ 305 static inline void list_splice_tail(struct list_head *list, 306 struct list_head *head) 307 { 308 if (!list_empty(list)) 309 __list_splice(list, head->prev, head); 310 } 311 312 /** 313 * list_splice_init - join two lists and reinitialise the emptied list. 314 * @list: the new list to add. 315 * @head: the place to add it in the first list. 316 * 317 * The list at @list is reinitialised 318 */ 319 static inline void list_splice_init(struct list_head *list, 320 struct list_head *head) 321 { 322 if (!list_empty(list)) { 323 __list_splice(list, head, head->next); 324 INIT_LIST_HEAD(list); 325 } 326 } 327 328 /** 329 * list_splice_tail_init - join two lists and reinitialise the emptied list 330 * @list: the new list to add. 331 * @head: the place to add it in the first list. 332 * 333 * Each of the lists is a queue. 334 * The list at @list is reinitialised 335 */ 336 static inline void list_splice_tail_init(struct list_head *list, 337 struct list_head *head) 338 { 339 if (!list_empty(list)) { 340 __list_splice(list, head->prev, head); 341 INIT_LIST_HEAD(list); 342 } 343 } 344 345 /** 346 * list_entry - get the struct for this entry 347 * @ptr: the &struct list_head pointer. 348 * @type: the type of the struct this is embedded in. 349 * @member: the name of the list_head within the struct. 350 */ 351 #define list_entry(ptr, type, member) \ 352 container_of(ptr, type, member) 353 354 /** 355 * list_first_entry - get the first element from a list 356 * @ptr: the list head to take the element from. 357 * @type: the type of the struct this is embedded in. 358 * @member: the name of the list_head within the struct. 359 * 360 * Note, that list is expected to be not empty. 361 */ 362 #define list_first_entry(ptr, type, member) \ 363 list_entry((ptr)->next, type, member) 364 365 /** 366 * list_last_entry - get the last element from a list 367 * @ptr: the list head to take the element from. 368 * @type: the type of the struct this is embedded in. 369 * @member: the name of the list_head within the struct. 370 * 371 * Note, that list is expected to be not empty. 372 */ 373 #define list_last_entry(ptr, type, member) \ 374 list_entry((ptr)->prev, type, member) 375 376 /** 377 * list_first_entry_or_null - get the first element from a list 378 * @ptr: the list head to take the element from. 379 * @type: the type of the struct this is embedded in. 380 * @member: the name of the list_head within the struct. 381 * 382 * Note that if the list is empty, it returns NULL. 383 */ 384 #define list_first_entry_or_null(ptr, type, member) \ 385 (!list_empty(ptr) ? list_first_entry(ptr, type, member) : NULL) 386 387 /** 388 * list_next_entry - get the next element in list 389 * @pos: the type * to cursor 390 * @member: the name of the list_head within the struct. 391 */ 392 #define list_next_entry(pos, member) \ 393 list_entry((pos)->member.next, typeof(*(pos)), member) 394 395 /** 396 * list_prev_entry - get the prev element in list 397 * @pos: the type * to cursor 398 * @member: the name of the list_head within the struct. 399 */ 400 #define list_prev_entry(pos, member) \ 401 list_entry((pos)->member.prev, typeof(*(pos)), member) 402 403 /** 404 * list_for_each - iterate over a list 405 * @pos: the &struct list_head to use as a loop cursor. 406 * @head: the head for your list. 407 */ 408 #define list_for_each(pos, head) \ 409 for (pos = (head)->next; pos != (head); pos = pos->next) 410 411 /** 412 * list_for_each_prev - iterate over a list backwards 413 * @pos: the &struct list_head to use as a loop cursor. 414 * @head: the head for your list. 415 */ 416 #define list_for_each_prev(pos, head) \ 417 for (pos = (head)->prev; pos != (head); pos = pos->prev) 418 419 /** 420 * list_for_each_safe - iterate over a list safe against removal of list entry 421 * @pos: the &struct list_head to use as a loop cursor. 422 * @n: another &struct list_head to use as temporary storage 423 * @head: the head for your list. 424 */ 425 #define list_for_each_safe(pos, n, head) \ 426 for (pos = (head)->next, n = pos->next; pos != (head); \ 427 pos = n, n = pos->next) 428 429 /** 430 * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry 431 * @pos: the &struct list_head to use as a loop cursor. 432 * @n: another &struct list_head to use as temporary storage 433 * @head: the head for your list. 434 */ 435 #define list_for_each_prev_safe(pos, n, head) \ 436 for (pos = (head)->prev, n = pos->prev; \ 437 pos != (head); \ 438 pos = n, n = pos->prev) 439 440 /** 441 * list_for_each_entry - iterate over list of given type 442 * @pos: the type * to use as a loop cursor. 443 * @head: the head for your list. 444 * @member: the name of the list_head within the struct. 445 */ 446 #define list_for_each_entry(pos, head, member) \ 447 for (pos = list_first_entry(head, typeof(*pos), member); \ 448 &pos->member != (head); \ 449 pos = list_next_entry(pos, member)) 450 451 /** 452 * list_for_each_entry_reverse - iterate backwards over list of given type. 453 * @pos: the type * to use as a loop cursor. 454 * @head: the head for your list. 455 * @member: the name of the list_head within the struct. 456 */ 457 #define list_for_each_entry_reverse(pos, head, member) \ 458 for (pos = list_last_entry(head, typeof(*pos), member); \ 459 &pos->member != (head); \ 460 pos = list_prev_entry(pos, member)) 461 462 /** 463 * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue() 464 * @pos: the type * to use as a start point 465 * @head: the head of the list 466 * @member: the name of the list_head within the struct. 467 * 468 * Prepares a pos entry for use as a start point in list_for_each_entry_continue(). 469 */ 470 #define list_prepare_entry(pos, head, member) \ 471 ((pos) ? : list_entry(head, typeof(*pos), member)) 472 473 /** 474 * list_for_each_entry_continue - continue iteration over list of given type 475 * @pos: the type * to use as a loop cursor. 476 * @head: the head for your list. 477 * @member: the name of the list_head within the struct. 478 * 479 * Continue to iterate over list of given type, continuing after 480 * the current position. 481 */ 482 #define list_for_each_entry_continue(pos, head, member) \ 483 for (pos = list_next_entry(pos, member); \ 484 &pos->member != (head); \ 485 pos = list_next_entry(pos, member)) 486 487 /** 488 * list_for_each_entry_continue_reverse - iterate backwards from the given point 489 * @pos: the type * to use as a loop cursor. 490 * @head: the head for your list. 491 * @member: the name of the list_head within the struct. 492 * 493 * Start to iterate over list of given type backwards, continuing after 494 * the current position. 495 */ 496 #define list_for_each_entry_continue_reverse(pos, head, member) \ 497 for (pos = list_prev_entry(pos, member); \ 498 &pos->member != (head); \ 499 pos = list_prev_entry(pos, member)) 500 501 /** 502 * list_for_each_entry_from - iterate over list of given type from the current point 503 * @pos: the type * to use as a loop cursor. 504 * @head: the head for your list. 505 * @member: the name of the list_head within the struct. 506 * 507 * Iterate over list of given type, continuing from current position. 508 */ 509 #define list_for_each_entry_from(pos, head, member) \ 510 for (; &pos->member != (head); \ 511 pos = list_next_entry(pos, member)) 512 513 /** 514 * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry 515 * @pos: the type * to use as a loop cursor. 516 * @n: another type * to use as temporary storage 517 * @head: the head for your list. 518 * @member: the name of the list_head within the struct. 519 */ 520 #define list_for_each_entry_safe(pos, n, head, member) \ 521 for (pos = list_first_entry(head, typeof(*pos), member), \ 522 n = list_next_entry(pos, member); \ 523 &pos->member != (head); \ 524 pos = n, n = list_next_entry(n, member)) 525 526 /** 527 * list_for_each_entry_safe_continue - continue list iteration safe against removal 528 * @pos: the type * to use as a loop cursor. 529 * @n: another type * to use as temporary storage 530 * @head: the head for your list. 531 * @member: the name of the list_head within the struct. 532 * 533 * Iterate over list of given type, continuing after current point, 534 * safe against removal of list entry. 535 */ 536 #define list_for_each_entry_safe_continue(pos, n, head, member) \ 537 for (pos = list_next_entry(pos, member), \ 538 n = list_next_entry(pos, member); \ 539 &pos->member != (head); \ 540 pos = n, n = list_next_entry(n, member)) 541 542 /** 543 * list_for_each_entry_safe_from - iterate over list from current point safe against removal 544 * @pos: the type * to use as a loop cursor. 545 * @n: another type * to use as temporary storage 546 * @head: the head for your list. 547 * @member: the name of the list_head within the struct. 548 * 549 * Iterate over list of given type from current point, safe against 550 * removal of list entry. 551 */ 552 #define list_for_each_entry_safe_from(pos, n, head, member) \ 553 for (n = list_next_entry(pos, member); \ 554 &pos->member != (head); \ 555 pos = n, n = list_next_entry(n, member)) 556 557 /** 558 * list_for_each_entry_safe_reverse - iterate backwards over list safe against removal 559 * @pos: the type * to use as a loop cursor. 560 * @n: another type * to use as temporary storage 561 * @head: the head for your list. 562 * @member: the name of the list_head within the struct. 563 * 564 * Iterate backwards over list of given type, safe against removal 565 * of list entry. 566 */ 567 #define list_for_each_entry_safe_reverse(pos, n, head, member) \ 568 for (pos = list_last_entry(head, typeof(*pos), member), \ 569 n = list_prev_entry(pos, member); \ 570 &pos->member != (head); \ 571 pos = n, n = list_prev_entry(n, member)) 572 573 /** 574 * list_safe_reset_next - reset a stale list_for_each_entry_safe loop 575 * @pos: the loop cursor used in the list_for_each_entry_safe loop 576 * @n: temporary storage used in list_for_each_entry_safe 577 * @member: the name of the list_head within the struct. 578 * 579 * list_safe_reset_next is not safe to use in general if the list may be 580 * modified concurrently (eg. the lock is dropped in the loop body). An 581 * exception to this is if the cursor element (pos) is pinned in the list, 582 * and list_safe_reset_next is called after re-taking the lock and before 583 * completing the current iteration of the loop body. 584 */ 585 #define list_safe_reset_next(pos, n, member) \ 586 n = list_next_entry(pos, member) 587 588 /* 589 * Double linked lists with a single pointer list head. 590 * Mostly useful for hash tables where the two pointer list head is 591 * too wasteful. 592 * You lose the ability to access the tail in O(1). 593 */ 594 595 #define HLIST_HEAD_INIT { .first = NULL } 596 #define HLIST_HEAD(name) struct hlist_head name = { .first = NULL } 597 #define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL) 598 static inline void INIT_HLIST_NODE(struct hlist_node *h) 599 { 600 h->next = NULL; 601 h->pprev = NULL; 602 } 603 604 static inline int hlist_unhashed(const struct hlist_node *h) 605 { 606 return !h->pprev; 607 } 608 609 static inline int hlist_empty(const struct hlist_head *h) 610 { 611 return !READ_ONCE(h->first); 612 } 613 614 static inline void __hlist_del(struct hlist_node *n) 615 { 616 struct hlist_node *next = n->next; 617 struct hlist_node **pprev = n->pprev; 618 619 WRITE_ONCE(*pprev, next); 620 if (next) 621 next->pprev = pprev; 622 } 623 624 static inline void hlist_del(struct hlist_node *n) 625 { 626 __hlist_del(n); 627 n->next = LIST_POISON1; 628 n->pprev = LIST_POISON2; 629 } 630 631 static inline void hlist_del_init(struct hlist_node *n) 632 { 633 if (!hlist_unhashed(n)) { 634 __hlist_del(n); 635 INIT_HLIST_NODE(n); 636 } 637 } 638 639 static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h) 640 { 641 struct hlist_node *first = h->first; 642 n->next = first; 643 if (first) 644 first->pprev = &n->next; 645 WRITE_ONCE(h->first, n); 646 n->pprev = &h->first; 647 } 648 649 /* next must be != NULL */ 650 static inline void hlist_add_before(struct hlist_node *n, 651 struct hlist_node *next) 652 { 653 n->pprev = next->pprev; 654 n->next = next; 655 next->pprev = &n->next; 656 WRITE_ONCE(*(n->pprev), n); 657 } 658 659 static inline void hlist_add_behind(struct hlist_node *n, 660 struct hlist_node *prev) 661 { 662 n->next = prev->next; 663 WRITE_ONCE(prev->next, n); 664 n->pprev = &prev->next; 665 666 if (n->next) 667 n->next->pprev = &n->next; 668 } 669 670 /* after that we'll appear to be on some hlist and hlist_del will work */ 671 static inline void hlist_add_fake(struct hlist_node *n) 672 { 673 n->pprev = &n->next; 674 } 675 676 static inline bool hlist_fake(struct hlist_node *h) 677 { 678 return h->pprev == &h->next; 679 } 680 681 /* 682 * Check whether the node is the only node of the head without 683 * accessing head: 684 */ 685 static inline bool 686 hlist_is_singular_node(struct hlist_node *n, struct hlist_head *h) 687 { 688 return !n->next && n->pprev == &h->first; 689 } 690 691 /* 692 * Move a list from one list head to another. Fixup the pprev 693 * reference of the first entry if it exists. 694 */ 695 static inline void hlist_move_list(struct hlist_head *old, 696 struct hlist_head *new) 697 { 698 new->first = old->first; 699 if (new->first) 700 new->first->pprev = &new->first; 701 old->first = NULL; 702 } 703 704 #define hlist_entry(ptr, type, member) container_of(ptr,type,member) 705 706 #define hlist_for_each(pos, head) \ 707 for (pos = (head)->first; pos ; pos = pos->next) 708 709 #define hlist_for_each_safe(pos, n, head) \ 710 for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \ 711 pos = n) 712 713 #define hlist_entry_safe(ptr, type, member) \ 714 ({ typeof(ptr) ____ptr = (ptr); \ 715 ____ptr ? hlist_entry(____ptr, type, member) : NULL; \ 716 }) 717 718 /** 719 * hlist_for_each_entry - iterate over list of given type 720 * @pos: the type * to use as a loop cursor. 721 * @head: the head for your list. 722 * @member: the name of the hlist_node within the struct. 723 */ 724 #define hlist_for_each_entry(pos, head, member) \ 725 for (pos = hlist_entry_safe((head)->first, typeof(*(pos)), member);\ 726 pos; \ 727 pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member)) 728 729 /** 730 * hlist_for_each_entry_continue - iterate over a hlist continuing after current point 731 * @pos: the type * to use as a loop cursor. 732 * @member: the name of the hlist_node within the struct. 733 */ 734 #define hlist_for_each_entry_continue(pos, member) \ 735 for (pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member);\ 736 pos; \ 737 pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member)) 738 739 /** 740 * hlist_for_each_entry_from - iterate over a hlist continuing from current point 741 * @pos: the type * to use as a loop cursor. 742 * @member: the name of the hlist_node within the struct. 743 */ 744 #define hlist_for_each_entry_from(pos, member) \ 745 for (; pos; \ 746 pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member)) 747 748 /** 749 * hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry 750 * @pos: the type * to use as a loop cursor. 751 * @n: another &struct hlist_node to use as temporary storage 752 * @head: the head for your list. 753 * @member: the name of the hlist_node within the struct. 754 */ 755 #define hlist_for_each_entry_safe(pos, n, head, member) \ 756 for (pos = hlist_entry_safe((head)->first, typeof(*pos), member);\ 757 pos && ({ n = pos->member.next; 1; }); \ 758 pos = hlist_entry_safe(n, typeof(*pos), member)) 759 760 #endif
1 /* include this file if the platform implements the dma_ DMA Mapping API 2 * and wants to provide the pci_ DMA Mapping API in terms of it */ 3 4 #ifndef _ASM_GENERIC_PCI_DMA_COMPAT_H 5 #define _ASM_GENERIC_PCI_DMA_COMPAT_H 6 7 #include <linux/dma-mapping.h> 8 9 /* This defines the direction arg to the DMA mapping routines. */ 10 #define PCI_DMA_BIDIRECTIONAL 0 11 #define PCI_DMA_TODEVICE 1 12 #define PCI_DMA_FROMDEVICE 2 13 #define PCI_DMA_NONE 3 14 15 static inline void * 16 pci_alloc_consistent(struct pci_dev *hwdev, size_t size, 17 dma_addr_t *dma_handle) 18 { 19 return dma_alloc_coherent(hwdev == NULL ? NULL : &hwdev->dev, size, dma_handle, GFP_ATOMIC); 20 } 21 22 static inline void * 23 pci_zalloc_consistent(struct pci_dev *hwdev, size_t size, 24 dma_addr_t *dma_handle) 25 { 26 return dma_zalloc_coherent(hwdev == NULL ? NULL : &hwdev->dev, 27 size, dma_handle, GFP_ATOMIC); 28 } 29 30 static inline void 31 pci_free_consistent(struct pci_dev *hwdev, size_t size, 32 void *vaddr, dma_addr_t dma_handle) 33 { 34 dma_free_coherent(hwdev == NULL ? NULL : &hwdev->dev, size, vaddr, dma_handle); 35 } 36 37 static inline dma_addr_t 38 pci_map_single(struct pci_dev *hwdev, void *ptr, size_t size, int direction) 39 { 40 return dma_map_single(hwdev == NULL ? NULL : &hwdev->dev, ptr, size, (enum dma_data_direction)direction); 41 } 42 43 static inline void 44 pci_unmap_single(struct pci_dev *hwdev, dma_addr_t dma_addr, 45 size_t size, int direction) 46 { 47 dma_unmap_single(hwdev == NULL ? NULL : &hwdev->dev, dma_addr, size, (enum dma_data_direction)direction); 48 } 49 50 static inline dma_addr_t 51 pci_map_page(struct pci_dev *hwdev, struct page *page, 52 unsigned long offset, size_t size, int direction) 53 { 54 return dma_map_page(hwdev == NULL ? NULL : &hwdev->dev, page, offset, size, (enum dma_data_direction)direction); 55 } 56 57 static inline void 58 pci_unmap_page(struct pci_dev *hwdev, dma_addr_t dma_address, 59 size_t size, int direction) 60 { 61 dma_unmap_page(hwdev == NULL ? NULL : &hwdev->dev, dma_address, size, (enum dma_data_direction)direction); 62 } 63 64 static inline int 65 pci_map_sg(struct pci_dev *hwdev, struct scatterlist *sg, 66 int nents, int direction) 67 { 68 return dma_map_sg(hwdev == NULL ? NULL : &hwdev->dev, sg, nents, (enum dma_data_direction)direction); 69 } 70 71 static inline void 72 pci_unmap_sg(struct pci_dev *hwdev, struct scatterlist *sg, 73 int nents, int direction) 74 { 75 dma_unmap_sg(hwdev == NULL ? NULL : &hwdev->dev, sg, nents, (enum dma_data_direction)direction); 76 } 77 78 static inline void 79 pci_dma_sync_single_for_cpu(struct pci_dev *hwdev, dma_addr_t dma_handle, 80 size_t size, int direction) 81 { 82 dma_sync_single_for_cpu(hwdev == NULL ? NULL : &hwdev->dev, dma_handle, size, (enum dma_data_direction)direction); 83 } 84 85 static inline void 86 pci_dma_sync_single_for_device(struct pci_dev *hwdev, dma_addr_t dma_handle, 87 size_t size, int direction) 88 { 89 dma_sync_single_for_device(hwdev == NULL ? NULL : &hwdev->dev, dma_handle, size, (enum dma_data_direction)direction); 90 } 91 92 static inline void 93 pci_dma_sync_sg_for_cpu(struct pci_dev *hwdev, struct scatterlist *sg, 94 int nelems, int direction) 95 { 96 dma_sync_sg_for_cpu(hwdev == NULL ? NULL : &hwdev->dev, sg, nelems, (enum dma_data_direction)direction); 97 } 98 99 static inline void 100 pci_dma_sync_sg_for_device(struct pci_dev *hwdev, struct scatterlist *sg, 101 int nelems, int direction) 102 { 103 dma_sync_sg_for_device(hwdev == NULL ? NULL : &hwdev->dev, sg, nelems, (enum dma_data_direction)direction); 104 } 105 106 static inline int 107 pci_dma_mapping_error(struct pci_dev *pdev, dma_addr_t dma_addr) 108 { 109 return dma_mapping_error(&pdev->dev, dma_addr); 110 } 111 112 #ifdef CONFIG_PCI 113 static inline int pci_set_dma_mask(struct pci_dev *dev, u64 mask) 114 { 115 return dma_set_mask(&dev->dev, mask); 116 } 117 118 static inline int pci_set_consistent_dma_mask(struct pci_dev *dev, u64 mask) 119 { 120 return dma_set_coherent_mask(&dev->dev, mask); 121 } 122 123 static inline int pci_set_dma_max_seg_size(struct pci_dev *dev, 124 unsigned int size) 125 { 126 return dma_set_max_seg_size(&dev->dev, size); 127 } 128 129 static inline int pci_set_dma_seg_boundary(struct pci_dev *dev, 130 unsigned long mask) 131 { 132 return dma_set_seg_boundary(&dev->dev, mask); 133 } 134 #else 135 static inline int pci_set_dma_mask(struct pci_dev *dev, u64 mask) 136 { return -EIO; } 137 static inline int pci_set_consistent_dma_mask(struct pci_dev *dev, u64 mask) 138 { return -EIO; } 139 static inline int pci_set_dma_max_seg_size(struct pci_dev *dev, 140 unsigned int size) 141 { return -EIO; } 142 static inline int pci_set_dma_seg_boundary(struct pci_dev *dev, 143 unsigned long mask) 144 { return -EIO; } 145 #endif 146 147 #endif
1 /* 2 * pci.h 3 * 4 * PCI defines and function prototypes 5 * Copyright 1994, Drew Eckhardt 6 * Copyright 1997--1999 Martin Mares <mj@ucw.cz> 7 * 8 * For more information, please consult the following manuals (look at 9 * http://www.pcisig.com/ for how to get them): 10 * 11 * PCI BIOS Specification 12 * PCI Local Bus Specification 13 * PCI to PCI Bridge Specification 14 * PCI System Design Guide 15 */ 16 #ifndef LINUX_PCI_H 17 #define LINUX_PCI_H 18 19 20 #include <linux/mod_devicetable.h> 21 22 #include <linux/types.h> 23 #include <linux/init.h> 24 #include <linux/ioport.h> 25 #include <linux/list.h> 26 #include <linux/compiler.h> 27 #include <linux/errno.h> 28 #include <linux/kobject.h> 29 #include <linux/atomic.h> 30 #include <linux/device.h> 31 #include <linux/io.h> 32 #include <linux/resource_ext.h> 33 #include <uapi/linux/pci.h> 34 35 #include <linux/pci_ids.h> 36 37 /* 38 * The PCI interface treats multi-function devices as independent 39 * devices. The slot/function address of each device is encoded 40 * in a single byte as follows: 41 * 42 * 7:3 = slot 43 * 2:0 = function 44 * 45 * PCI_DEVFN(), PCI_SLOT(), and PCI_FUNC() are defined in uapi/linux/pci.h. 46 * In the interest of not exposing interfaces to user-space unnecessarily, 47 * the following kernel-only defines are being added here. 48 */ 49 #define PCI_DEVID(bus, devfn) ((((u16)(bus)) << 8) | (devfn)) 50 /* return bus from PCI devid = ((u16)bus_number) << 8) | devfn */ 51 #define PCI_BUS_NUM(x) (((x) >> 8) & 0xff) 52 53 /* pci_slot represents a physical slot */ 54 struct pci_slot { 55 struct pci_bus *bus; /* The bus this slot is on */ 56 struct list_head list; /* node in list of slots on this bus */ 57 struct hotplug_slot *hotplug; /* Hotplug info (migrate over time) */ 58 unsigned char number; /* PCI_SLOT(pci_dev->devfn) */ 59 struct kobject kobj; 60 }; 61 62 static inline const char *pci_slot_name(const struct pci_slot *slot) 63 { 64 return kobject_name(&slot->kobj); 65 } 66 67 /* File state for mmap()s on /proc/bus/pci/X/Y */ 68 enum pci_mmap_state { 69 pci_mmap_io, 70 pci_mmap_mem 71 }; 72 73 /* 74 * For PCI devices, the region numbers are assigned this way: 75 */ 76 enum { 77 /* #0-5: standard PCI resources */ 78 PCI_STD_RESOURCES, 79 PCI_STD_RESOURCE_END = 5, 80 81 /* #6: expansion ROM resource */ 82 PCI_ROM_RESOURCE, 83 84 /* device specific resources */ 85 #ifdef CONFIG_PCI_IOV 86 PCI_IOV_RESOURCES, 87 PCI_IOV_RESOURCE_END = PCI_IOV_RESOURCES + PCI_SRIOV_NUM_BARS - 1, 88 #endif 89 90 /* resources assigned to buses behind the bridge */ 91 #define PCI_BRIDGE_RESOURCE_NUM 4 92 93 PCI_BRIDGE_RESOURCES, 94 PCI_BRIDGE_RESOURCE_END = PCI_BRIDGE_RESOURCES + 95 PCI_BRIDGE_RESOURCE_NUM - 1, 96 97 /* total resources associated with a PCI device */ 98 PCI_NUM_RESOURCES, 99 100 /* preserve this for compatibility */ 101 DEVICE_COUNT_RESOURCE = PCI_NUM_RESOURCES, 102 }; 103 104 /* 105 * pci_power_t values must match the bits in the Capabilities PME_Support 106 * and Control/Status PowerState fields in the Power Management capability. 107 */ 108 typedef int __bitwise pci_power_t; 109 110 #define PCI_D0 ((pci_power_t __force) 0) 111 #define PCI_D1 ((pci_power_t __force) 1) 112 #define PCI_D2 ((pci_power_t __force) 2) 113 #define PCI_D3hot ((pci_power_t __force) 3) 114 #define PCI_D3cold ((pci_power_t __force) 4) 115 #define PCI_UNKNOWN ((pci_power_t __force) 5) 116 #define PCI_POWER_ERROR ((pci_power_t __force) -1) 117 118 /* Remember to update this when the list above changes! */ 119 extern const char *pci_power_names[]; 120 121 static inline const char *pci_power_name(pci_power_t state) 122 { 123 return pci_power_names[1 + (__force int) state]; 124 } 125 126 #define PCI_PM_D2_DELAY 200 127 #define PCI_PM_D3_WAIT 10 128 #define PCI_PM_D3COLD_WAIT 100 129 #define PCI_PM_BUS_WAIT 50 130 131 /** The pci_channel state describes connectivity between the CPU and 132 * the pci device. If some PCI bus between here and the pci device 133 * has crashed or locked up, this info is reflected here. 134 */ 135 typedef unsigned int __bitwise pci_channel_state_t; 136 137 enum pci_channel_state { 138 /* I/O channel is in normal state */ 139 pci_channel_io_normal = (__force pci_channel_state_t) 1, 140 141 /* I/O to channel is blocked */ 142 pci_channel_io_frozen = (__force pci_channel_state_t) 2, 143 144 /* PCI card is dead */ 145 pci_channel_io_perm_failure = (__force pci_channel_state_t) 3, 146 }; 147 148 typedef unsigned int __bitwise pcie_reset_state_t; 149 150 enum pcie_reset_state { 151 /* Reset is NOT asserted (Use to deassert reset) */ 152 pcie_deassert_reset = (__force pcie_reset_state_t) 1, 153 154 /* Use #PERST to reset PCIe device */ 155 pcie_warm_reset = (__force pcie_reset_state_t) 2, 156 157 /* Use PCIe Hot Reset to reset device */ 158 pcie_hot_reset = (__force pcie_reset_state_t) 3 159 }; 160 161 typedef unsigned short __bitwise pci_dev_flags_t; 162 enum pci_dev_flags { 163 /* INTX_DISABLE in PCI_COMMAND register disables MSI 164 * generation too. 165 */ 166 PCI_DEV_FLAGS_MSI_INTX_DISABLE_BUG = (__force pci_dev_flags_t) (1 << 0), 167 /* Device configuration is irrevocably lost if disabled into D3 */ 168 PCI_DEV_FLAGS_NO_D3 = (__force pci_dev_flags_t) (1 << 1), 169 /* Provide indication device is assigned by a Virtual Machine Manager */ 170 PCI_DEV_FLAGS_ASSIGNED = (__force pci_dev_flags_t) (1 << 2), 171 /* Flag for quirk use to store if quirk-specific ACS is enabled */ 172 PCI_DEV_FLAGS_ACS_ENABLED_QUIRK = (__force pci_dev_flags_t) (1 << 3), 173 /* Use a PCIe-to-PCI bridge alias even if !pci_is_pcie */ 174 PCI_DEV_FLAG_PCIE_BRIDGE_ALIAS = (__force pci_dev_flags_t) (1 << 5), 175 /* Do not use bus resets for device */ 176 PCI_DEV_FLAGS_NO_BUS_RESET = (__force pci_dev_flags_t) (1 << 6), 177 /* Do not use PM reset even if device advertises NoSoftRst- */ 178 PCI_DEV_FLAGS_NO_PM_RESET = (__force pci_dev_flags_t) (1 << 7), 179 /* Get VPD from function 0 VPD */ 180 PCI_DEV_FLAGS_VPD_REF_F0 = (__force pci_dev_flags_t) (1 << 8), 181 }; 182 183 enum pci_irq_reroute_variant { 184 INTEL_IRQ_REROUTE_VARIANT = 1, 185 MAX_IRQ_REROUTE_VARIANTS = 3 186 }; 187 188 typedef unsigned short __bitwise pci_bus_flags_t; 189 enum pci_bus_flags { 190 PCI_BUS_FLAGS_NO_MSI = (__force pci_bus_flags_t) 1, 191 PCI_BUS_FLAGS_NO_MMRBC = (__force pci_bus_flags_t) 2, 192 }; 193 194 /* These values come from the PCI Express Spec */ 195 enum pcie_link_width { 196 PCIE_LNK_WIDTH_RESRV = 0x00, 197 PCIE_LNK_X1 = 0x01, 198 PCIE_LNK_X2 = 0x02, 199 PCIE_LNK_X4 = 0x04, 200 PCIE_LNK_X8 = 0x08, 201 PCIE_LNK_X12 = 0x0C, 202 PCIE_LNK_X16 = 0x10, 203 PCIE_LNK_X32 = 0x20, 204 PCIE_LNK_WIDTH_UNKNOWN = 0xFF, 205 }; 206 207 /* Based on the PCI Hotplug Spec, but some values are made up by us */ 208 enum pci_bus_speed { 209 PCI_SPEED_33MHz = 0x00, 210 PCI_SPEED_66MHz = 0x01, 211 PCI_SPEED_66MHz_PCIX = 0x02, 212 PCI_SPEED_100MHz_PCIX = 0x03, 213 PCI_SPEED_133MHz_PCIX = 0x04, 214 PCI_SPEED_66MHz_PCIX_ECC = 0x05, 215 PCI_SPEED_100MHz_PCIX_ECC = 0x06, 216 PCI_SPEED_133MHz_PCIX_ECC = 0x07, 217 PCI_SPEED_66MHz_PCIX_266 = 0x09, 218 PCI_SPEED_100MHz_PCIX_266 = 0x0a, 219 PCI_SPEED_133MHz_PCIX_266 = 0x0b, 220 AGP_UNKNOWN = 0x0c, 221 AGP_1X = 0x0d, 222 AGP_2X = 0x0e, 223 AGP_4X = 0x0f, 224 AGP_8X = 0x10, 225 PCI_SPEED_66MHz_PCIX_533 = 0x11, 226 PCI_SPEED_100MHz_PCIX_533 = 0x12, 227 PCI_SPEED_133MHz_PCIX_533 = 0x13, 228 PCIE_SPEED_2_5GT = 0x14, 229 PCIE_SPEED_5_0GT = 0x15, 230 PCIE_SPEED_8_0GT = 0x16, 231 PCI_SPEED_UNKNOWN = 0xff, 232 }; 233 234 struct pci_cap_saved_data { 235 u16 cap_nr; 236 bool cap_extended; 237 unsigned int size; 238 u32 data[0]; 239 }; 240 241 struct pci_cap_saved_state { 242 struct hlist_node next; 243 struct pci_cap_saved_data cap; 244 }; 245 246 struct pcie_link_state; 247 struct pci_vpd; 248 struct pci_sriov; 249 struct pci_ats; 250 251 /* 252 * The pci_dev structure is used to describe PCI devices. 253 */ 254 struct pci_dev { 255 struct list_head bus_list; /* node in per-bus list */ 256 struct pci_bus *bus; /* bus this device is on */ 257 struct pci_bus *subordinate; /* bus this device bridges to */ 258 259 void *sysdata; /* hook for sys-specific extension */ 260 struct proc_dir_entry *procent; /* device entry in /proc/bus/pci */ 261 struct pci_slot *slot; /* Physical slot this device is in */ 262 263 unsigned int devfn; /* encoded device & function index */ 264 unsigned short vendor; 265 unsigned short device; 266 unsigned short subsystem_vendor; 267 unsigned short subsystem_device; 268 unsigned int class; /* 3 bytes: (base,sub,prog-if) */ 269 u8 revision; /* PCI revision, low byte of class word */ 270 u8 hdr_type; /* PCI header type (`multi' flag masked out) */ 271 u8 pcie_cap; /* PCIe capability offset */ 272 u8 msi_cap; /* MSI capability offset */ 273 u8 msix_cap; /* MSI-X capability offset */ 274 u8 pcie_mpss:3; /* PCIe Max Payload Size Supported */ 275 u8 rom_base_reg; /* which config register controls the ROM */ 276 u8 pin; /* which interrupt pin this device uses */ 277 u16 pcie_flags_reg; /* cached PCIe Capabilities Register */ 278 unsigned long *dma_alias_mask;/* mask of enabled devfn aliases */ 279 280 struct pci_driver *driver; /* which driver has allocated this device */ 281 u64 dma_mask; /* Mask of the bits of bus address this 282 device implements. Normally this is 283 0xffffffff. You only need to change 284 this if your device has broken DMA 285 or supports 64-bit transfers. */ 286 287 struct device_dma_parameters dma_parms; 288 289 pci_power_t current_state; /* Current operating state. In ACPI-speak, 290 this is D0-D3, D0 being fully functional, 291 and D3 being off. */ 292 u8 pm_cap; /* PM capability offset */ 293 unsigned int pme_support:5; /* Bitmask of states from which PME# 294 can be generated */ 295 unsigned int pme_interrupt:1; 296 unsigned int pme_poll:1; /* Poll device's PME status bit */ 297 unsigned int d1_support:1; /* Low power state D1 is supported */ 298 unsigned int d2_support:1; /* Low power state D2 is supported */ 299 unsigned int no_d1d2:1; /* D1 and D2 are forbidden */ 300 unsigned int no_d3cold:1; /* D3cold is forbidden */ 301 unsigned int bridge_d3:1; /* Allow D3 for bridge */ 302 unsigned int d3cold_allowed:1; /* D3cold is allowed by user */ 303 unsigned int mmio_always_on:1; /* disallow turning off io/mem 304 decoding during bar sizing */ 305 unsigned int wakeup_prepared:1; 306 unsigned int runtime_d3cold:1; /* whether go through runtime 307 D3cold, not set for devices 308 powered on/off by the 309 corresponding bridge */ 310 unsigned int ignore_hotplug:1; /* Ignore hotplug events */ 311 unsigned int d3_delay; /* D3->D0 transition time in ms */ 312 unsigned int d3cold_delay; /* D3cold->D0 transition time in ms */ 313 314 #ifdef CONFIG_PCIEASPM 315 struct pcie_link_state *link_state; /* ASPM link state */ 316 #endif 317 318 pci_channel_state_t error_state; /* current connectivity state */ 319 struct device dev; /* Generic device interface */ 320 321 int cfg_size; /* Size of configuration space */ 322 323 /* 324 * Instead of touching interrupt line and base address registers 325 * directly, use the values stored here. They might be different! 326 */ 327 unsigned int irq; 328 struct cpumask *irq_affinity; 329 struct resource resource[DEVICE_COUNT_RESOURCE]; /* I/O and memory regions + expansion ROMs */ 330 331 bool match_driver; /* Skip attaching driver */ 332 /* These fields are used by common fixups */ 333 unsigned int transparent:1; /* Subtractive decode PCI bridge */ 334 unsigned int multifunction:1;/* Part of multi-function device */ 335 /* keep track of device state */ 336 unsigned int is_added:1; 337 unsigned int is_busmaster:1; /* device is busmaster */ 338 unsigned int no_msi:1; /* device may not use msi */ 339 unsigned int no_64bit_msi:1; /* device may only use 32-bit MSIs */ 340 unsigned int block_cfg_access:1; /* config space access is blocked */ 341 unsigned int broken_parity_status:1; /* Device generates false positive parity */ 342 unsigned int irq_reroute_variant:2; /* device needs IRQ rerouting variant */ 343 unsigned int msi_enabled:1; 344 unsigned int msix_enabled:1; 345 unsigned int ari_enabled:1; /* ARI forwarding */ 346 unsigned int ats_enabled:1; /* Address Translation Service */ 347 unsigned int is_managed:1; 348 unsigned int needs_freset:1; /* Dev requires fundamental reset */ 349 unsigned int state_saved:1; 350 unsigned int is_physfn:1; 351 unsigned int is_virtfn:1; 352 unsigned int reset_fn:1; 353 unsigned int is_hotplug_bridge:1; 354 unsigned int __aer_firmware_first_valid:1; 355 unsigned int __aer_firmware_first:1; 356 unsigned int broken_intx_masking:1; 357 unsigned int io_window_1k:1; /* Intel P2P bridge 1K I/O windows */ 358 unsigned int irq_managed:1; 359 unsigned int has_secondary_link:1; 360 unsigned int non_compliant_bars:1; /* broken BARs; ignore them */ 361 pci_dev_flags_t dev_flags; 362 atomic_t enable_cnt; /* pci_enable_device has been called */ 363 364 u32 saved_config_space[16]; /* config space saved at suspend time */ 365 struct hlist_head saved_cap_space; 366 struct bin_attribute *rom_attr; /* attribute descriptor for sysfs ROM entry */ 367 int rom_attr_enabled; /* has display of the rom attribute been enabled? */ 368 struct bin_attribute *res_attr[DEVICE_COUNT_RESOURCE]; /* sysfs file for resources */ 369 struct bin_attribute *res_attr_wc[DEVICE_COUNT_RESOURCE]; /* sysfs file for WC mapping of resources */ 370 #ifdef CONFIG_PCI_MSI 371 const struct attribute_group **msi_irq_groups; 372 #endif 373 struct pci_vpd *vpd; 374 #ifdef CONFIG_PCI_ATS 375 union { 376 struct pci_sriov *sriov; /* SR-IOV capability related */ 377 struct pci_dev *physfn; /* the PF this VF is associated with */ 378 }; 379 u16 ats_cap; /* ATS Capability offset */ 380 u8 ats_stu; /* ATS Smallest Translation Unit */ 381 atomic_t ats_ref_cnt; /* number of VFs with ATS enabled */ 382 #endif 383 phys_addr_t rom; /* Physical address of ROM if it's not from the BAR */ 384 size_t romlen; /* Length of ROM if it's not from the BAR */ 385 char *driver_override; /* Driver name to force a match */ 386 }; 387 388 static inline struct pci_dev *pci_physfn(struct pci_dev *dev) 389 { 390 #ifdef CONFIG_PCI_IOV 391 if (dev->is_virtfn) 392 dev = dev->physfn; 393 #endif 394 return dev; 395 } 396 397 struct pci_dev *pci_alloc_dev(struct pci_bus *bus); 398 399 #define to_pci_dev(n) container_of(n, struct pci_dev, dev) 400 #define for_each_pci_dev(d) while ((d = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, d)) != NULL) 401 402 static inline int pci_channel_offline(struct pci_dev *pdev) 403 { 404 return (pdev->error_state != pci_channel_io_normal); 405 } 406 407 struct pci_host_bridge { 408 struct device dev; 409 struct pci_bus *bus; /* root bus */ 410 struct list_head windows; /* resource_entry */ 411 void (*release_fn)(struct pci_host_bridge *); 412 void *release_data; 413 unsigned int ignore_reset_delay:1; /* for entire hierarchy */ 414 /* Resource alignment requirements */ 415 resource_size_t (*align_resource)(struct pci_dev *dev, 416 const struct resource *res, 417 resource_size_t start, 418 resource_size_t size, 419 resource_size_t align); 420 }; 421 422 #define to_pci_host_bridge(n) container_of(n, struct pci_host_bridge, dev) 423 424 struct pci_host_bridge *pci_find_host_bridge(struct pci_bus *bus); 425 426 void pci_set_host_bridge_release(struct pci_host_bridge *bridge, 427 void (*release_fn)(struct pci_host_bridge *), 428 void *release_data); 429 430 int pcibios_root_bridge_prepare(struct pci_host_bridge *bridge); 431 432 /* 433 * The first PCI_BRIDGE_RESOURCE_NUM PCI bus resources (those that correspond 434 * to P2P or CardBus bridge windows) go in a table. Additional ones (for 435 * buses below host bridges or subtractive decode bridges) go in the list. 436 * Use pci_bus_for_each_resource() to iterate through all the resources. 437 */ 438 439 /* 440 * PCI_SUBTRACTIVE_DECODE means the bridge forwards the window implicitly 441 * and there's no way to program the bridge with the details of the window. 442 * This does not apply to ACPI _CRS windows, even with the _DEC subtractive- 443 * decode bit set, because they are explicit and can be programmed with _SRS. 444 */ 445 #define PCI_SUBTRACTIVE_DECODE 0x1 446 447 struct pci_bus_resource { 448 struct list_head list; 449 struct resource *res; 450 unsigned int flags; 451 }; 452 453 #define PCI_REGION_FLAG_MASK 0x0fU /* These bits of resource flags tell us the PCI region flags */ 454 455 struct pci_bus { 456 struct list_head node; /* node in list of buses */ 457 struct pci_bus *parent; /* parent bus this bridge is on */ 458 struct list_head children; /* list of child buses */ 459 struct list_head devices; /* list of devices on this bus */ 460 struct pci_dev *self; /* bridge device as seen by parent */ 461 struct list_head slots; /* list of slots on this bus; 462 protected by pci_slot_mutex */ 463 struct resource *resource[PCI_BRIDGE_RESOURCE_NUM]; 464 struct list_head resources; /* address space routed to this bus */ 465 struct resource busn_res; /* bus numbers routed to this bus */ 466 467 struct pci_ops *ops; /* configuration access functions */ 468 struct msi_controller *msi; /* MSI controller */ 469 void *sysdata; /* hook for sys-specific extension */ 470 struct proc_dir_entry *procdir; /* directory entry in /proc/bus/pci */ 471 472 unsigned char number; /* bus number */ 473 unsigned char primary; /* number of primary bridge */ 474 unsigned char max_bus_speed; /* enum pci_bus_speed */ 475 unsigned char cur_bus_speed; /* enum pci_bus_speed */ 476 #ifdef CONFIG_PCI_DOMAINS_GENERIC 477 int domain_nr; 478 #endif 479 480 char name[48]; 481 482 unsigned short bridge_ctl; /* manage NO_ISA/FBB/et al behaviors */ 483 pci_bus_flags_t bus_flags; /* inherited by child buses */ 484 struct device *bridge; 485 struct device dev; 486 struct bin_attribute *legacy_io; /* legacy I/O for this bus */ 487 struct bin_attribute *legacy_mem; /* legacy mem */ 488 unsigned int is_added:1; 489 }; 490 491 #define to_pci_bus(n) container_of(n, struct pci_bus, dev) 492 493 /* 494 * Returns true if the PCI bus is root (behind host-PCI bridge), 495 * false otherwise 496 * 497 * Some code assumes that "bus->self == NULL" means that bus is a root bus. 498 * This is incorrect because "virtual" buses added for SR-IOV (via 499 * virtfn_add_bus()) have "bus->self == NULL" but are not root buses. 500 */ 501 static inline bool pci_is_root_bus(struct pci_bus *pbus) 502 { 503 return !(pbus->parent); 504 } 505 506 /** 507 * pci_is_bridge - check if the PCI device is a bridge 508 * @dev: PCI device 509 * 510 * Return true if the PCI device is bridge whether it has subordinate 511 * or not. 512 */ 513 static inline bool pci_is_bridge(struct pci_dev *dev) 514 { 515 return dev->hdr_type == PCI_HEADER_TYPE_BRIDGE || 516 dev->hdr_type == PCI_HEADER_TYPE_CARDBUS; 517 } 518 519 static inline struct pci_dev *pci_upstream_bridge(struct pci_dev *dev) 520 { 521 dev = pci_physfn(dev); 522 if (pci_is_root_bus(dev->bus)) 523 return NULL; 524 525 return dev->bus->self; 526 } 527 528 struct device *pci_get_host_bridge_device(struct pci_dev *dev); 529 void pci_put_host_bridge_device(struct device *dev); 530 531 #ifdef CONFIG_PCI_MSI 532 static inline bool pci_dev_msi_enabled(struct pci_dev *pci_dev) 533 { 534 return pci_dev->msi_enabled || pci_dev->msix_enabled; 535 } 536 #else 537 static inline bool pci_dev_msi_enabled(struct pci_dev *pci_dev) { return false; } 538 #endif 539 540 /* 541 * Error values that may be returned by PCI functions. 542 */ 543 #define PCIBIOS_SUCCESSFUL 0x00 544 #define PCIBIOS_FUNC_NOT_SUPPORTED 0x81 545 #define PCIBIOS_BAD_VENDOR_ID 0x83 546 #define PCIBIOS_DEVICE_NOT_FOUND 0x86 547 #define PCIBIOS_BAD_REGISTER_NUMBER 0x87 548 #define PCIBIOS_SET_FAILED 0x88 549 #define PCIBIOS_BUFFER_TOO_SMALL 0x89 550 551 /* 552 * Translate above to generic errno for passing back through non-PCI code. 553 */ 554 static inline int pcibios_err_to_errno(int err) 555 { 556 if (err <= PCIBIOS_SUCCESSFUL) 557 return err; /* Assume already errno */ 558 559 switch (err) { 560 case PCIBIOS_FUNC_NOT_SUPPORTED: 561 return -ENOENT; 562 case PCIBIOS_BAD_VENDOR_ID: 563 return -ENOTTY; 564 case PCIBIOS_DEVICE_NOT_FOUND: 565 return -ENODEV; 566 case PCIBIOS_BAD_REGISTER_NUMBER: 567 return -EFAULT; 568 case PCIBIOS_SET_FAILED: 569 return -EIO; 570 case PCIBIOS_BUFFER_TOO_SMALL: 571 return -ENOSPC; 572 } 573 574 return -ERANGE; 575 } 576 577 /* Low-level architecture-dependent routines */ 578 579 struct pci_ops { 580 int (*add_bus)(struct pci_bus *bus); 581 void (*remove_bus)(struct pci_bus *bus); 582 void __iomem *(*map_bus)(struct pci_bus *bus, unsigned int devfn, int where); 583 int (*read)(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *val); 584 int (*write)(struct pci_bus *bus, unsigned int devfn, int where, int size, u32 val); 585 }; 586 587 /* 588 * ACPI needs to be able to access PCI config space before we've done a 589 * PCI bus scan and created pci_bus structures. 590 */ 591 int raw_pci_read(unsigned int domain, unsigned int bus, unsigned int devfn, 592 int reg, int len, u32 *val); 593 int raw_pci_write(unsigned int domain, unsigned int bus, unsigned int devfn, 594 int reg, int len, u32 val); 595 596 #ifdef CONFIG_PCI_BUS_ADDR_T_64BIT 597 typedef u64 pci_bus_addr_t; 598 #else 599 typedef u32 pci_bus_addr_t; 600 #endif 601 602 struct pci_bus_region { 603 pci_bus_addr_t start; 604 pci_bus_addr_t end; 605 }; 606 607 struct pci_dynids { 608 spinlock_t lock; /* protects list, index */ 609 struct list_head list; /* for IDs added at runtime */ 610 }; 611 612 613 /* 614 * PCI Error Recovery System (PCI-ERS). If a PCI device driver provides 615 * a set of callbacks in struct pci_error_handlers, that device driver 616 * will be notified of PCI bus errors, and will be driven to recovery 617 * when an error occurs. 618 */ 619 620 typedef unsigned int __bitwise pci_ers_result_t; 621 622 enum pci_ers_result { 623 /* no result/none/not supported in device driver */ 624 PCI_ERS_RESULT_NONE = (__force pci_ers_result_t) 1, 625 626 /* Device driver can recover without slot reset */ 627 PCI_ERS_RESULT_CAN_RECOVER = (__force pci_ers_result_t) 2, 628 629 /* Device driver wants slot to be reset. */ 630 PCI_ERS_RESULT_NEED_RESET = (__force pci_ers_result_t) 3, 631 632 /* Device has completely failed, is unrecoverable */ 633 PCI_ERS_RESULT_DISCONNECT = (__force pci_ers_result_t) 4, 634 635 /* Device driver is fully recovered and operational */ 636 PCI_ERS_RESULT_RECOVERED = (__force pci_ers_result_t) 5, 637 638 /* No AER capabilities registered for the driver */ 639 PCI_ERS_RESULT_NO_AER_DRIVER = (__force pci_ers_result_t) 6, 640 }; 641 642 /* PCI bus error event callbacks */ 643 struct pci_error_handlers { 644 /* PCI bus error detected on this device */ 645 pci_ers_result_t (*error_detected)(struct pci_dev *dev, 646 enum pci_channel_state error); 647 648 /* MMIO has been re-enabled, but not DMA */ 649 pci_ers_result_t (*mmio_enabled)(struct pci_dev *dev); 650 651 /* PCI Express link has been reset */ 652 pci_ers_result_t (*link_reset)(struct pci_dev *dev); 653 654 /* PCI slot has been reset */ 655 pci_ers_result_t (*slot_reset)(struct pci_dev *dev); 656 657 /* PCI function reset prepare or completed */ 658 void (*reset_notify)(struct pci_dev *dev, bool prepare); 659 660 /* Device driver may resume normal operations */ 661 void (*resume)(struct pci_dev *dev); 662 }; 663 664 665 struct module; 666 struct pci_driver { 667 struct list_head node; 668 const char *name; 669 const struct pci_device_id *id_table; /* must be non-NULL for probe to be called */ 670 int (*probe) (struct pci_dev *dev, const struct pci_device_id *id); /* New device inserted */ 671 void (*remove) (struct pci_dev *dev); /* Device removed (NULL if not a hot-plug capable driver) */ 672 int (*suspend) (struct pci_dev *dev, pm_message_t state); /* Device suspended */ 673 int (*suspend_late) (struct pci_dev *dev, pm_message_t state); 674 int (*resume_early) (struct pci_dev *dev); 675 int (*resume) (struct pci_dev *dev); /* Device woken up */ 676 void (*shutdown) (struct pci_dev *dev); 677 int (*sriov_configure) (struct pci_dev *dev, int num_vfs); /* PF pdev */ 678 const struct pci_error_handlers *err_handler; 679 struct device_driver driver; 680 struct pci_dynids dynids; 681 }; 682 683 #define to_pci_driver(drv) container_of(drv, struct pci_driver, driver) 684 685 /** 686 * DEFINE_PCI_DEVICE_TABLE - macro used to describe a pci device table 687 * @_table: device table name 688 * 689 * This macro is deprecated and should not be used in new code. 690 */ 691 #define DEFINE_PCI_DEVICE_TABLE(_table) \ 692 const struct pci_device_id _table[] 693 694 /** 695 * PCI_DEVICE - macro used to describe a specific pci device 696 * @vend: the 16 bit PCI Vendor ID 697 * @dev: the 16 bit PCI Device ID 698 * 699 * This macro is used to create a struct pci_device_id that matches a 700 * specific device. The subvendor and subdevice fields will be set to 701 * PCI_ANY_ID. 702 */ 703 #define PCI_DEVICE(vend,dev) \ 704 .vendor = (vend), .device = (dev), \ 705 .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID 706 707 /** 708 * PCI_DEVICE_SUB - macro used to describe a specific pci device with subsystem 709 * @vend: the 16 bit PCI Vendor ID 710 * @dev: the 16 bit PCI Device ID 711 * @subvend: the 16 bit PCI Subvendor ID 712 * @subdev: the 16 bit PCI Subdevice ID 713 * 714 * This macro is used to create a struct pci_device_id that matches a 715 * specific device with subsystem information. 716 */ 717 #define PCI_DEVICE_SUB(vend, dev, subvend, subdev) \ 718 .vendor = (vend), .device = (dev), \ 719 .subvendor = (subvend), .subdevice = (subdev) 720 721 /** 722 * PCI_DEVICE_CLASS - macro used to describe a specific pci device class 723 * @dev_class: the class, subclass, prog-if triple for this device 724 * @dev_class_mask: the class mask for this device 725 * 726 * This macro is used to create a struct pci_device_id that matches a 727 * specific PCI class. The vendor, device, subvendor, and subdevice 728 * fields will be set to PCI_ANY_ID. 729 */ 730 #define PCI_DEVICE_CLASS(dev_class,dev_class_mask) \ 731 .class = (dev_class), .class_mask = (dev_class_mask), \ 732 .vendor = PCI_ANY_ID, .device = PCI_ANY_ID, \ 733 .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID 734 735 /** 736 * PCI_VDEVICE - macro used to describe a specific pci device in short form 737 * @vend: the vendor name 738 * @dev: the 16 bit PCI Device ID 739 * 740 * This macro is used to create a struct pci_device_id that matches a 741 * specific PCI device. The subvendor, and subdevice fields will be set 742 * to PCI_ANY_ID. The macro allows the next field to follow as the device 743 * private data. 744 */ 745 746 #define PCI_VDEVICE(vend, dev) \ 747 .vendor = PCI_VENDOR_ID_##vend, .device = (dev), \ 748 .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID, 0, 0 749 750 enum { 751 PCI_REASSIGN_ALL_RSRC = 0x00000001, /* ignore firmware setup */ 752 PCI_REASSIGN_ALL_BUS = 0x00000002, /* reassign all bus numbers */ 753 PCI_PROBE_ONLY = 0x00000004, /* use existing setup */ 754 PCI_CAN_SKIP_ISA_ALIGN = 0x00000008, /* don't do ISA alignment */ 755 PCI_ENABLE_PROC_DOMAINS = 0x00000010, /* enable domains in /proc */ 756 PCI_COMPAT_DOMAIN_0 = 0x00000020, /* ... except domain 0 */ 757 PCI_SCAN_ALL_PCIE_DEVS = 0x00000040, /* scan all, not just dev 0 */ 758 }; 759 760 /* these external functions are only available when PCI support is enabled */ 761 #ifdef CONFIG_PCI 762 763 extern unsigned int pci_flags; 764 765 static inline void pci_set_flags(int flags) { pci_flags = flags; } 766 static inline void pci_add_flags(int flags) { pci_flags |= flags; } 767 static inline void pci_clear_flags(int flags) { pci_flags &= ~flags; } 768 static inline int pci_has_flag(int flag) { return pci_flags & flag; } 769 770 void pcie_bus_configure_settings(struct pci_bus *bus); 771 772 enum pcie_bus_config_types { 773 PCIE_BUS_TUNE_OFF, /* don't touch MPS at all */ 774 PCIE_BUS_DEFAULT, /* ensure MPS matches upstream bridge */ 775 PCIE_BUS_SAFE, /* use largest MPS boot-time devices support */ 776 PCIE_BUS_PERFORMANCE, /* use MPS and MRRS for best performance */ 777 PCIE_BUS_PEER2PEER, /* set MPS = 128 for all devices */ 778 }; 779 780 extern enum pcie_bus_config_types pcie_bus_config; 781 782 extern struct bus_type pci_bus_type; 783 784 /* Do NOT directly access these two variables, unless you are arch-specific PCI 785 * code, or PCI core code. */ 786 extern struct list_head pci_root_buses; /* list of all known PCI buses */ 787 /* Some device drivers need know if PCI is initiated */ 788 int no_pci_devices(void); 789 790 void pcibios_resource_survey_bus(struct pci_bus *bus); 791 void pcibios_bus_add_device(struct pci_dev *pdev); 792 void pcibios_add_bus(struct pci_bus *bus); 793 void pcibios_remove_bus(struct pci_bus *bus); 794 void pcibios_fixup_bus(struct pci_bus *); 795 int __must_check pcibios_enable_device(struct pci_dev *, int mask); 796 /* Architecture-specific versions may override this (weak) */ 797 char *pcibios_setup(char *str); 798 799 /* Used only when drivers/pci/setup.c is used */ 800 resource_size_t pcibios_align_resource(void *, const struct resource *, 801 resource_size_t, 802 resource_size_t); 803 void pcibios_update_irq(struct pci_dev *, int irq); 804 805 /* Weak but can be overriden by arch */ 806 void pci_fixup_cardbus(struct pci_bus *); 807 808 /* Generic PCI functions used internally */ 809 810 void pcibios_resource_to_bus(struct pci_bus *bus, struct pci_bus_region *region, 811 struct resource *res); 812 void pcibios_bus_to_resource(struct pci_bus *bus, struct resource *res, 813 struct pci_bus_region *region); 814 void pcibios_scan_specific_bus(int busn); 815 struct pci_bus *pci_find_bus(int domain, int busnr); 816 void pci_bus_add_devices(const struct pci_bus *bus); 817 struct pci_bus *pci_scan_bus(int bus, struct pci_ops *ops, void *sysdata); 818 struct pci_bus *pci_create_root_bus(struct device *parent, int bus, 819 struct pci_ops *ops, void *sysdata, 820 struct list_head *resources); 821 int pci_bus_insert_busn_res(struct pci_bus *b, int bus, int busmax); 822 int pci_bus_update_busn_res_end(struct pci_bus *b, int busmax); 823 void pci_bus_release_busn_res(struct pci_bus *b); 824 struct pci_bus *pci_scan_root_bus_msi(struct device *parent, int bus, 825 struct pci_ops *ops, void *sysdata, 826 struct list_head *resources, 827 struct msi_controller *msi); 828 struct pci_bus *pci_scan_root_bus(struct device *parent, int bus, 829 struct pci_ops *ops, void *sysdata, 830 struct list_head *resources); 831 struct pci_bus *pci_add_new_bus(struct pci_bus *parent, struct pci_dev *dev, 832 int busnr); 833 void pcie_update_link_speed(struct pci_bus *bus, u16 link_status); 834 struct pci_slot *pci_create_slot(struct pci_bus *parent, int slot_nr, 835 const char *name, 836 struct hotplug_slot *hotplug); 837 void pci_destroy_slot(struct pci_slot *slot); 838 #ifdef CONFIG_SYSFS 839 void pci_dev_assign_slot(struct pci_dev *dev); 840 #else 841 static inline void pci_dev_assign_slot(struct pci_dev *dev) { } 842 #endif 843 int pci_scan_slot(struct pci_bus *bus, int devfn); 844 struct pci_dev *pci_scan_single_device(struct pci_bus *bus, int devfn); 845 void pci_device_add(struct pci_dev *dev, struct pci_bus *bus); 846 unsigned int pci_scan_child_bus(struct pci_bus *bus); 847 void pci_bus_add_device(struct pci_dev *dev); 848 void pci_read_bridge_bases(struct pci_bus *child); 849 struct resource *pci_find_parent_resource(const struct pci_dev *dev, 850 struct resource *res); 851 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev); 852 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin); 853 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge); 854 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp); 855 struct pci_dev *pci_dev_get(struct pci_dev *dev); 856 void pci_dev_put(struct pci_dev *dev); 857 void pci_remove_bus(struct pci_bus *b); 858 void pci_stop_and_remove_bus_device(struct pci_dev *dev); 859 void pci_stop_and_remove_bus_device_locked(struct pci_dev *dev); 860 void pci_stop_root_bus(struct pci_bus *bus); 861 void pci_remove_root_bus(struct pci_bus *bus); 862 void pci_setup_cardbus(struct pci_bus *bus); 863 void pcibios_setup_bridge(struct pci_bus *bus, unsigned long type); 864 void pci_sort_breadthfirst(void); 865 #define dev_is_pci(d) ((d)->bus == &pci_bus_type) 866 #define dev_is_pf(d) ((dev_is_pci(d) ? to_pci_dev(d)->is_physfn : false)) 867 #define dev_num_vf(d) ((dev_is_pci(d) ? pci_num_vf(to_pci_dev(d)) : 0)) 868 869 /* Generic PCI functions exported to card drivers */ 870 871 enum pci_lost_interrupt_reason { 872 PCI_LOST_IRQ_NO_INFORMATION = 0, 873 PCI_LOST_IRQ_DISABLE_MSI, 874 PCI_LOST_IRQ_DISABLE_MSIX, 875 PCI_LOST_IRQ_DISABLE_ACPI, 876 }; 877 enum pci_lost_interrupt_reason pci_lost_interrupt(struct pci_dev *dev); 878 int pci_find_capability(struct pci_dev *dev, int cap); 879 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap); 880 int pci_find_ext_capability(struct pci_dev *dev, int cap); 881 int pci_find_next_ext_capability(struct pci_dev *dev, int pos, int cap); 882 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap); 883 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap); 884 struct pci_bus *pci_find_next_bus(const struct pci_bus *from); 885 886 struct pci_dev *pci_get_device(unsigned int vendor, unsigned int device, 887 struct pci_dev *from); 888 struct pci_dev *pci_get_subsys(unsigned int vendor, unsigned int device, 889 unsigned int ss_vendor, unsigned int ss_device, 890 struct pci_dev *from); 891 struct pci_dev *pci_get_slot(struct pci_bus *bus, unsigned int devfn); 892 struct pci_dev *pci_get_domain_bus_and_slot(int domain, unsigned int bus, 893 unsigned int devfn); 894 static inline struct pci_dev *pci_get_bus_and_slot(unsigned int bus, 895 unsigned int devfn) 896 { 897 return pci_get_domain_bus_and_slot(0, bus, devfn); 898 } 899 struct pci_dev *pci_get_class(unsigned int class, struct pci_dev *from); 900 int pci_dev_present(const struct pci_device_id *ids); 901 902 int pci_bus_read_config_byte(struct pci_bus *bus, unsigned int devfn, 903 int where, u8 *val); 904 int pci_bus_read_config_word(struct pci_bus *bus, unsigned int devfn, 905 int where, u16 *val); 906 int pci_bus_read_config_dword(struct pci_bus *bus, unsigned int devfn, 907 int where, u32 *val); 908 int pci_bus_write_config_byte(struct pci_bus *bus, unsigned int devfn, 909 int where, u8 val); 910 int pci_bus_write_config_word(struct pci_bus *bus, unsigned int devfn, 911 int where, u16 val); 912 int pci_bus_write_config_dword(struct pci_bus *bus, unsigned int devfn, 913 int where, u32 val); 914 915 int pci_generic_config_read(struct pci_bus *bus, unsigned int devfn, 916 int where, int size, u32 *val); 917 int pci_generic_config_write(struct pci_bus *bus, unsigned int devfn, 918 int where, int size, u32 val); 919 int pci_generic_config_read32(struct pci_bus *bus, unsigned int devfn, 920 int where, int size, u32 *val); 921 int pci_generic_config_write32(struct pci_bus *bus, unsigned int devfn, 922 int where, int size, u32 val); 923 924 struct pci_ops *pci_bus_set_ops(struct pci_bus *bus, struct pci_ops *ops); 925 926 static inline int pci_read_config_byte(const struct pci_dev *dev, int where, u8 *val) 927 { 928 return pci_bus_read_config_byte(dev->bus, dev->devfn, where, val); 929 } 930 static inline int pci_read_config_word(const struct pci_dev *dev, int where, u16 *val) 931 { 932 return pci_bus_read_config_word(dev->bus, dev->devfn, where, val); 933 } 934 static inline int pci_read_config_dword(const struct pci_dev *dev, int where, 935 u32 *val) 936 { 937 return pci_bus_read_config_dword(dev->bus, dev->devfn, where, val); 938 } 939 static inline int pci_write_config_byte(const struct pci_dev *dev, int where, u8 val) 940 { 941 return pci_bus_write_config_byte(dev->bus, dev->devfn, where, val); 942 } 943 static inline int pci_write_config_word(const struct pci_dev *dev, int where, u16 val) 944 { 945 return pci_bus_write_config_word(dev->bus, dev->devfn, where, val); 946 } 947 static inline int pci_write_config_dword(const struct pci_dev *dev, int where, 948 u32 val) 949 { 950 return pci_bus_write_config_dword(dev->bus, dev->devfn, where, val); 951 } 952 953 int pcie_capability_read_word(struct pci_dev *dev, int pos, u16 *val); 954 int pcie_capability_read_dword(struct pci_dev *dev, int pos, u32 *val); 955 int pcie_capability_write_word(struct pci_dev *dev, int pos, u16 val); 956 int pcie_capability_write_dword(struct pci_dev *dev, int pos, u32 val); 957 int pcie_capability_clear_and_set_word(struct pci_dev *dev, int pos, 958 u16 clear, u16 set); 959 int pcie_capability_clear_and_set_dword(struct pci_dev *dev, int pos, 960 u32 clear, u32 set); 961 962 static inline int pcie_capability_set_word(struct pci_dev *dev, int pos, 963 u16 set) 964 { 965 return pcie_capability_clear_and_set_word(dev, pos, 0, set); 966 } 967 968 static inline int pcie_capability_set_dword(struct pci_dev *dev, int pos, 969 u32 set) 970 { 971 return pcie_capability_clear_and_set_dword(dev, pos, 0, set); 972 } 973 974 static inline int pcie_capability_clear_word(struct pci_dev *dev, int pos, 975 u16 clear) 976 { 977 return pcie_capability_clear_and_set_word(dev, pos, clear, 0); 978 } 979 980 static inline int pcie_capability_clear_dword(struct pci_dev *dev, int pos, 981 u32 clear) 982 { 983 return pcie_capability_clear_and_set_dword(dev, pos, clear, 0); 984 } 985 986 /* user-space driven config access */ 987 int pci_user_read_config_byte(struct pci_dev *dev, int where, u8 *val); 988 int pci_user_read_config_word(struct pci_dev *dev, int where, u16 *val); 989 int pci_user_read_config_dword(struct pci_dev *dev, int where, u32 *val); 990 int pci_user_write_config_byte(struct pci_dev *dev, int where, u8 val); 991 int pci_user_write_config_word(struct pci_dev *dev, int where, u16 val); 992 int pci_user_write_config_dword(struct pci_dev *dev, int where, u32 val); 993 994 int __must_check pci_enable_device(struct pci_dev *dev); 995 int __must_check pci_enable_device_io(struct pci_dev *dev); 996 int __must_check pci_enable_device_mem(struct pci_dev *dev); 997 int __must_check pci_reenable_device(struct pci_dev *); 998 int __must_check pcim_enable_device(struct pci_dev *pdev); 999 void pcim_pin_device(struct pci_dev *pdev); 1000 1001 static inline int pci_is_enabled(struct pci_dev *pdev) 1002 { 1003 return (atomic_read(&pdev->enable_cnt) > 0); 1004 } 1005 1006 static inline int pci_is_managed(struct pci_dev *pdev) 1007 { 1008 return pdev->is_managed; 1009 } 1010 1011 void pci_disable_device(struct pci_dev *dev); 1012 1013 extern unsigned int pcibios_max_latency; 1014 void pci_set_master(struct pci_dev *dev); 1015 void pci_clear_master(struct pci_dev *dev); 1016 1017 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state); 1018 int pci_set_cacheline_size(struct pci_dev *dev); 1019 #define HAVE_PCI_SET_MWI 1020 int __must_check pci_set_mwi(struct pci_dev *dev); 1021 int pci_try_set_mwi(struct pci_dev *dev); 1022 void pci_clear_mwi(struct pci_dev *dev); 1023 void pci_intx(struct pci_dev *dev, int enable); 1024 bool pci_intx_mask_supported(struct pci_dev *dev); 1025 bool pci_check_and_mask_intx(struct pci_dev *dev); 1026 bool pci_check_and_unmask_intx(struct pci_dev *dev); 1027 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask); 1028 int pci_wait_for_pending_transaction(struct pci_dev *dev); 1029 int pcix_get_max_mmrbc(struct pci_dev *dev); 1030 int pcix_get_mmrbc(struct pci_dev *dev); 1031 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc); 1032 int pcie_get_readrq(struct pci_dev *dev); 1033 int pcie_set_readrq(struct pci_dev *dev, int rq); 1034 int pcie_get_mps(struct pci_dev *dev); 1035 int pcie_set_mps(struct pci_dev *dev, int mps); 1036 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed, 1037 enum pcie_link_width *width); 1038 int __pci_reset_function(struct pci_dev *dev); 1039 int __pci_reset_function_locked(struct pci_dev *dev); 1040 int pci_reset_function(struct pci_dev *dev); 1041 int pci_try_reset_function(struct pci_dev *dev); 1042 int pci_probe_reset_slot(struct pci_slot *slot); 1043 int pci_reset_slot(struct pci_slot *slot); 1044 int pci_try_reset_slot(struct pci_slot *slot); 1045 int pci_probe_reset_bus(struct pci_bus *bus); 1046 int pci_reset_bus(struct pci_bus *bus); 1047 int pci_try_reset_bus(struct pci_bus *bus); 1048 void pci_reset_secondary_bus(struct pci_dev *dev); 1049 void pcibios_reset_secondary_bus(struct pci_dev *dev); 1050 void pci_reset_bridge_secondary_bus(struct pci_dev *dev); 1051 void pci_update_resource(struct pci_dev *dev, int resno); 1052 int __must_check pci_assign_resource(struct pci_dev *dev, int i); 1053 int __must_check pci_reassign_resource(struct pci_dev *dev, int i, resource_size_t add_size, resource_size_t align); 1054 int pci_select_bars(struct pci_dev *dev, unsigned long flags); 1055 bool pci_device_is_present(struct pci_dev *pdev); 1056 void pci_ignore_hotplug(struct pci_dev *dev); 1057 1058 /* ROM control related routines */ 1059 int pci_enable_rom(struct pci_dev *pdev); 1060 void pci_disable_rom(struct pci_dev *pdev); 1061 void __iomem __must_check *pci_map_rom(struct pci_dev *pdev, size_t *size); 1062 void pci_unmap_rom(struct pci_dev *pdev, void __iomem *rom); 1063 size_t pci_get_rom_size(struct pci_dev *pdev, void __iomem *rom, size_t size); 1064 void __iomem __must_check *pci_platform_rom(struct pci_dev *pdev, size_t *size); 1065 1066 /* Power management related routines */ 1067 int pci_save_state(struct pci_dev *dev); 1068 void pci_restore_state(struct pci_dev *dev); 1069 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev); 1070 int pci_load_saved_state(struct pci_dev *dev, 1071 struct pci_saved_state *state); 1072 int pci_load_and_free_saved_state(struct pci_dev *dev, 1073 struct pci_saved_state **state); 1074 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap); 1075 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, 1076 u16 cap); 1077 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size); 1078 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, 1079 u16 cap, unsigned int size); 1080 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state); 1081 int pci_set_power_state(struct pci_dev *dev, pci_power_t state); 1082 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state); 1083 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state); 1084 void pci_pme_active(struct pci_dev *dev, bool enable); 1085 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, 1086 bool runtime, bool enable); 1087 int pci_wake_from_d3(struct pci_dev *dev, bool enable); 1088 int pci_prepare_to_sleep(struct pci_dev *dev); 1089 int pci_back_from_sleep(struct pci_dev *dev); 1090 bool pci_dev_run_wake(struct pci_dev *dev); 1091 bool pci_check_pme_status(struct pci_dev *dev); 1092 void pci_pme_wakeup_bus(struct pci_bus *bus); 1093 void pci_d3cold_enable(struct pci_dev *dev); 1094 void pci_d3cold_disable(struct pci_dev *dev); 1095 1096 static inline int pci_enable_wake(struct pci_dev *dev, pci_power_t state, 1097 bool enable) 1098 { 1099 return __pci_enable_wake(dev, state, false, enable); 1100 } 1101 1102 /* PCI Virtual Channel */ 1103 int pci_save_vc_state(struct pci_dev *dev); 1104 void pci_restore_vc_state(struct pci_dev *dev); 1105 void pci_allocate_vc_save_buffers(struct pci_dev *dev); 1106 1107 /* For use by arch with custom probe code */ 1108 void set_pcie_port_type(struct pci_dev *pdev); 1109 void set_pcie_hotplug_bridge(struct pci_dev *pdev); 1110 1111 /* Functions for PCI Hotplug drivers to use */ 1112 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap); 1113 unsigned int pci_rescan_bus_bridge_resize(struct pci_dev *bridge); 1114 unsigned int pci_rescan_bus(struct pci_bus *bus); 1115 void pci_lock_rescan_remove(void); 1116 void pci_unlock_rescan_remove(void); 1117 1118 /* Vital product data routines */ 1119 ssize_t pci_read_vpd(struct pci_dev *dev, loff_t pos, size_t count, void *buf); 1120 ssize_t pci_write_vpd(struct pci_dev *dev, loff_t pos, size_t count, const void *buf); 1121 int pci_set_vpd_size(struct pci_dev *dev, size_t len); 1122 1123 /* Helper functions for low-level code (drivers/pci/setup-[bus,res].c) */ 1124 resource_size_t pcibios_retrieve_fw_addr(struct pci_dev *dev, int idx); 1125 void pci_bus_assign_resources(const struct pci_bus *bus); 1126 void pci_bus_claim_resources(struct pci_bus *bus); 1127 void pci_bus_size_bridges(struct pci_bus *bus); 1128 int pci_claim_resource(struct pci_dev *, int); 1129 int pci_claim_bridge_resource(struct pci_dev *bridge, int i); 1130 void pci_assign_unassigned_resources(void); 1131 void pci_assign_unassigned_bridge_resources(struct pci_dev *bridge); 1132 void pci_assign_unassigned_bus_resources(struct pci_bus *bus); 1133 void pci_assign_unassigned_root_bus_resources(struct pci_bus *bus); 1134 void pdev_enable_device(struct pci_dev *); 1135 int pci_enable_resources(struct pci_dev *, int mask); 1136 void pci_fixup_irqs(u8 (*)(struct pci_dev *, u8 *), 1137 int (*)(const struct pci_dev *, u8, u8)); 1138 #define HAVE_PCI_REQ_REGIONS 2 1139 int __must_check pci_request_regions(struct pci_dev *, const char *); 1140 int __must_check pci_request_regions_exclusive(struct pci_dev *, const char *); 1141 void pci_release_regions(struct pci_dev *); 1142 int __must_check pci_request_region(struct pci_dev *, int, const char *); 1143 int __must_check pci_request_region_exclusive(struct pci_dev *, int, const char *); 1144 void pci_release_region(struct pci_dev *, int); 1145 int pci_request_selected_regions(struct pci_dev *, int, const char *); 1146 int pci_request_selected_regions_exclusive(struct pci_dev *, int, const char *); 1147 void pci_release_selected_regions(struct pci_dev *, int); 1148 1149 /* drivers/pci/bus.c */ 1150 struct pci_bus *pci_bus_get(struct pci_bus *bus); 1151 void pci_bus_put(struct pci_bus *bus); 1152 void pci_add_resource(struct list_head *resources, struct resource *res); 1153 void pci_add_resource_offset(struct list_head *resources, struct resource *res, 1154 resource_size_t offset); 1155 void pci_free_resource_list(struct list_head *resources); 1156 void pci_bus_add_resource(struct pci_bus *bus, struct resource *res, 1157 unsigned int flags); 1158 struct resource *pci_bus_resource_n(const struct pci_bus *bus, int n); 1159 void pci_bus_remove_resources(struct pci_bus *bus); 1160 int devm_request_pci_bus_resources(struct device *dev, 1161 struct list_head *resources); 1162 1163 #define pci_bus_for_each_resource(bus, res, i) \ 1164 for (i = 0; \ 1165 (res = pci_bus_resource_n(bus, i)) || i < PCI_BRIDGE_RESOURCE_NUM; \ 1166 i++) 1167 1168 int __must_check pci_bus_alloc_resource(struct pci_bus *bus, 1169 struct resource *res, resource_size_t size, 1170 resource_size_t align, resource_size_t min, 1171 unsigned long type_mask, 1172 resource_size_t (*alignf)(void *, 1173 const struct resource *, 1174 resource_size_t, 1175 resource_size_t), 1176 void *alignf_data); 1177 1178 1179 int pci_register_io_range(phys_addr_t addr, resource_size_t size); 1180 unsigned long pci_address_to_pio(phys_addr_t addr); 1181 phys_addr_t pci_pio_to_address(unsigned long pio); 1182 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr); 1183 void pci_unmap_iospace(struct resource *res); 1184 1185 static inline pci_bus_addr_t pci_bus_address(struct pci_dev *pdev, int bar) 1186 { 1187 struct pci_bus_region region; 1188 1189 pcibios_resource_to_bus(pdev->bus, &region, &pdev->resource[bar]); 1190 return region.start; 1191 } 1192 1193 /* Proper probing supporting hot-pluggable devices */ 1194 int __must_check __pci_register_driver(struct pci_driver *, struct module *, 1195 const char *mod_name); 1196 1197 /* 1198 * pci_register_driver must be a macro so that KBUILD_MODNAME can be expanded 1199 */ 1200 #define pci_register_driver(driver) \ 1201 __pci_register_driver(driver, THIS_MODULE, KBUILD_MODNAME) 1202 1203 void pci_unregister_driver(struct pci_driver *dev); 1204 1205 /** 1206 * module_pci_driver() - Helper macro for registering a PCI driver 1207 * @__pci_driver: pci_driver struct 1208 * 1209 * Helper macro for PCI drivers which do not do anything special in module 1210 * init/exit. This eliminates a lot of boilerplate. Each module may only 1211 * use this macro once, and calling it replaces module_init() and module_exit() 1212 */ 1213 #define module_pci_driver(__pci_driver) \ 1214 module_driver(__pci_driver, pci_register_driver, \ 1215 pci_unregister_driver) 1216 1217 /** 1218 * builtin_pci_driver() - Helper macro for registering a PCI driver 1219 * @__pci_driver: pci_driver struct 1220 * 1221 * Helper macro for PCI drivers which do not do anything special in their 1222 * init code. This eliminates a lot of boilerplate. Each driver may only 1223 * use this macro once, and calling it replaces device_initcall(...) 1224 */ 1225 #define builtin_pci_driver(__pci_driver) \ 1226 builtin_driver(__pci_driver, pci_register_driver) 1227 1228 struct pci_driver *pci_dev_driver(const struct pci_dev *dev); 1229 int pci_add_dynid(struct pci_driver *drv, 1230 unsigned int vendor, unsigned int device, 1231 unsigned int subvendor, unsigned int subdevice, 1232 unsigned int class, unsigned int class_mask, 1233 unsigned long driver_data); 1234 const struct pci_device_id *pci_match_id(const struct pci_device_id *ids, 1235 struct pci_dev *dev); 1236 int pci_scan_bridge(struct pci_bus *bus, struct pci_dev *dev, int max, 1237 int pass); 1238 1239 void pci_walk_bus(struct pci_bus *top, int (*cb)(struct pci_dev *, void *), 1240 void *userdata); 1241 int pci_cfg_space_size(struct pci_dev *dev); 1242 unsigned char pci_bus_max_busnr(struct pci_bus *bus); 1243 void pci_setup_bridge(struct pci_bus *bus); 1244 resource_size_t pcibios_window_alignment(struct pci_bus *bus, 1245 unsigned long type); 1246 resource_size_t pcibios_iov_resource_alignment(struct pci_dev *dev, int resno); 1247 1248 #define PCI_VGA_STATE_CHANGE_BRIDGE (1 << 0) 1249 #define PCI_VGA_STATE_CHANGE_DECODES (1 << 1) 1250 1251 int pci_set_vga_state(struct pci_dev *pdev, bool decode, 1252 unsigned int command_bits, u32 flags); 1253 1254 #define PCI_IRQ_NOLEGACY (1 << 0) /* don't use legacy interrupts */ 1255 #define PCI_IRQ_NOMSI (1 << 1) /* don't use MSI interrupts */ 1256 #define PCI_IRQ_NOMSIX (1 << 2) /* don't use MSI-X interrupts */ 1257 #define PCI_IRQ_NOAFFINITY (1 << 3) /* don't auto-assign affinity */ 1258 1259 /* kmem_cache style wrapper around pci_alloc_consistent() */ 1260 1261 #include <linux/pci-dma.h> 1262 #include <linux/dmapool.h> 1263 1264 #define pci_pool dma_pool 1265 #define pci_pool_create(name, pdev, size, align, allocation) \ 1266 dma_pool_create(name, &pdev->dev, size, align, allocation) 1267 #define pci_pool_destroy(pool) dma_pool_destroy(pool) 1268 #define pci_pool_alloc(pool, flags, handle) dma_pool_alloc(pool, flags, handle) 1269 #define pci_pool_zalloc(pool, flags, handle) \ 1270 dma_pool_zalloc(pool, flags, handle) 1271 #define pci_pool_free(pool, vaddr, addr) dma_pool_free(pool, vaddr, addr) 1272 1273 struct msix_entry { 1274 u32 vector; /* kernel uses to write allocated vector */ 1275 u16 entry; /* driver uses to specify entry, OS writes */ 1276 }; 1277 1278 #ifdef CONFIG_PCI_MSI 1279 int pci_msi_vec_count(struct pci_dev *dev); 1280 void pci_msi_shutdown(struct pci_dev *dev); 1281 void pci_disable_msi(struct pci_dev *dev); 1282 int pci_msix_vec_count(struct pci_dev *dev); 1283 int pci_enable_msix(struct pci_dev *dev, struct msix_entry *entries, int nvec); 1284 void pci_msix_shutdown(struct pci_dev *dev); 1285 void pci_disable_msix(struct pci_dev *dev); 1286 void pci_restore_msi_state(struct pci_dev *dev); 1287 int pci_msi_enabled(void); 1288 int pci_enable_msi_range(struct pci_dev *dev, int minvec, int maxvec); 1289 static inline int pci_enable_msi_exact(struct pci_dev *dev, int nvec) 1290 { 1291 int rc = pci_enable_msi_range(dev, nvec, nvec); 1292 if (rc < 0) 1293 return rc; 1294 return 0; 1295 } 1296 int pci_enable_msix_range(struct pci_dev *dev, struct msix_entry *entries, 1297 int minvec, int maxvec); 1298 static inline int pci_enable_msix_exact(struct pci_dev *dev, 1299 struct msix_entry *entries, int nvec) 1300 { 1301 int rc = pci_enable_msix_range(dev, entries, nvec, nvec); 1302 if (rc < 0) 1303 return rc; 1304 return 0; 1305 } 1306 int pci_alloc_irq_vectors(struct pci_dev *dev, unsigned int min_vecs, 1307 unsigned int max_vecs, unsigned int flags); 1308 void pci_free_irq_vectors(struct pci_dev *dev); 1309 int pci_irq_vector(struct pci_dev *dev, unsigned int nr); 1310 1311 #else 1312 static inline int pci_msi_vec_count(struct pci_dev *dev) { return -ENOSYS; } 1313 static inline void pci_msi_shutdown(struct pci_dev *dev) { } 1314 static inline void pci_disable_msi(struct pci_dev *dev) { } 1315 static inline int pci_msix_vec_count(struct pci_dev *dev) { return -ENOSYS; } 1316 static inline int pci_enable_msix(struct pci_dev *dev, 1317 struct msix_entry *entries, int nvec) 1318 { return -ENOSYS; } 1319 static inline void pci_msix_shutdown(struct pci_dev *dev) { } 1320 static inline void pci_disable_msix(struct pci_dev *dev) { } 1321 static inline void pci_restore_msi_state(struct pci_dev *dev) { } 1322 static inline int pci_msi_enabled(void) { return 0; } 1323 static inline int pci_enable_msi_range(struct pci_dev *dev, int minvec, 1324 int maxvec) 1325 { return -ENOSYS; } 1326 static inline int pci_enable_msi_exact(struct pci_dev *dev, int nvec) 1327 { return -ENOSYS; } 1328 static inline int pci_enable_msix_range(struct pci_dev *dev, 1329 struct msix_entry *entries, int minvec, int maxvec) 1330 { return -ENOSYS; } 1331 static inline int pci_enable_msix_exact(struct pci_dev *dev, 1332 struct msix_entry *entries, int nvec) 1333 { return -ENOSYS; } 1334 static inline int pci_alloc_irq_vectors(struct pci_dev *dev, 1335 unsigned int min_vecs, unsigned int max_vecs, 1336 unsigned int flags) 1337 { 1338 if (min_vecs > 1) 1339 return -EINVAL; 1340 return 1; 1341 } 1342 static inline void pci_free_irq_vectors(struct pci_dev *dev) 1343 { 1344 } 1345 1346 static inline int pci_irq_vector(struct pci_dev *dev, unsigned int nr) 1347 { 1348 if (WARN_ON_ONCE(nr > 0)) 1349 return -EINVAL; 1350 return dev->irq; 1351 } 1352 #endif 1353 1354 #ifdef CONFIG_PCIEPORTBUS 1355 extern bool pcie_ports_disabled; 1356 extern bool pcie_ports_auto; 1357 #else 1358 #define pcie_ports_disabled true 1359 #define pcie_ports_auto false 1360 #endif 1361 1362 #ifdef CONFIG_PCIEASPM 1363 bool pcie_aspm_support_enabled(void); 1364 #else 1365 static inline bool pcie_aspm_support_enabled(void) { return false; } 1366 #endif 1367 1368 #ifdef CONFIG_PCIEAER 1369 void pci_no_aer(void); 1370 bool pci_aer_available(void); 1371 #else 1372 static inline void pci_no_aer(void) { } 1373 static inline bool pci_aer_available(void) { return false; } 1374 #endif 1375 1376 #ifdef CONFIG_PCIE_ECRC 1377 void pcie_set_ecrc_checking(struct pci_dev *dev); 1378 void pcie_ecrc_get_policy(char *str); 1379 #else 1380 static inline void pcie_set_ecrc_checking(struct pci_dev *dev) { } 1381 static inline void pcie_ecrc_get_policy(char *str) { } 1382 #endif 1383 1384 #define pci_enable_msi(pdev) pci_enable_msi_exact(pdev, 1) 1385 1386 #ifdef CONFIG_HT_IRQ 1387 /* The functions a driver should call */ 1388 int ht_create_irq(struct pci_dev *dev, int idx); 1389 void ht_destroy_irq(unsigned int irq); 1390 #endif /* CONFIG_HT_IRQ */ 1391 1392 #ifdef CONFIG_PCI_ATS 1393 /* Address Translation Service */ 1394 void pci_ats_init(struct pci_dev *dev); 1395 int pci_enable_ats(struct pci_dev *dev, int ps); 1396 void pci_disable_ats(struct pci_dev *dev); 1397 int pci_ats_queue_depth(struct pci_dev *dev); 1398 #else 1399 static inline void pci_ats_init(struct pci_dev *d) { } 1400 static inline int pci_enable_ats(struct pci_dev *d, int ps) { return -ENODEV; } 1401 static inline void pci_disable_ats(struct pci_dev *d) { } 1402 static inline int pci_ats_queue_depth(struct pci_dev *d) { return -ENODEV; } 1403 #endif 1404 1405 void pci_cfg_access_lock(struct pci_dev *dev); 1406 bool pci_cfg_access_trylock(struct pci_dev *dev); 1407 void pci_cfg_access_unlock(struct pci_dev *dev); 1408 1409 /* 1410 * PCI domain support. Sometimes called PCI segment (eg by ACPI), 1411 * a PCI domain is defined to be a set of PCI buses which share 1412 * configuration space. 1413 */ 1414 #ifdef CONFIG_PCI_DOMAINS 1415 extern int pci_domains_supported; 1416 int pci_get_new_domain_nr(void); 1417 #else 1418 enum { pci_domains_supported = 0 }; 1419 static inline int pci_domain_nr(struct pci_bus *bus) { return 0; } 1420 static inline int pci_proc_domain(struct pci_bus *bus) { return 0; } 1421 static inline int pci_get_new_domain_nr(void) { return -ENOSYS; } 1422 #endif /* CONFIG_PCI_DOMAINS */ 1423 1424 /* 1425 * Generic implementation for PCI domain support. If your 1426 * architecture does not need custom management of PCI 1427 * domains then this implementation will be used 1428 */ 1429 #ifdef CONFIG_PCI_DOMAINS_GENERIC 1430 static inline int pci_domain_nr(struct pci_bus *bus) 1431 { 1432 return bus->domain_nr; 1433 } 1434 #ifdef CONFIG_ACPI 1435 int acpi_pci_bus_find_domain_nr(struct pci_bus *bus); 1436 #else 1437 static inline int acpi_pci_bus_find_domain_nr(struct pci_bus *bus) 1438 { return 0; } 1439 #endif 1440 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent); 1441 #endif 1442 1443 /* some architectures require additional setup to direct VGA traffic */ 1444 typedef int (*arch_set_vga_state_t)(struct pci_dev *pdev, bool decode, 1445 unsigned int command_bits, u32 flags); 1446 void pci_register_set_vga_state(arch_set_vga_state_t func); 1447 1448 static inline int 1449 pci_request_io_regions(struct pci_dev *pdev, const char *name) 1450 { 1451 return pci_request_selected_regions(pdev, 1452 pci_select_bars(pdev, IORESOURCE_IO), name); 1453 } 1454 1455 static inline void 1456 pci_release_io_regions(struct pci_dev *pdev) 1457 { 1458 return pci_release_selected_regions(pdev, 1459 pci_select_bars(pdev, IORESOURCE_IO)); 1460 } 1461 1462 static inline int 1463 pci_request_mem_regions(struct pci_dev *pdev, const char *name) 1464 { 1465 return pci_request_selected_regions(pdev, 1466 pci_select_bars(pdev, IORESOURCE_MEM), name); 1467 } 1468 1469 static inline void 1470 pci_release_mem_regions(struct pci_dev *pdev) 1471 { 1472 return pci_release_selected_regions(pdev, 1473 pci_select_bars(pdev, IORESOURCE_MEM)); 1474 } 1475 1476 #else /* CONFIG_PCI is not enabled */ 1477 1478 static inline void pci_set_flags(int flags) { } 1479 static inline void pci_add_flags(int flags) { } 1480 static inline void pci_clear_flags(int flags) { } 1481 static inline int pci_has_flag(int flag) { return 0; } 1482 1483 /* 1484 * If the system does not have PCI, clearly these return errors. Define 1485 * these as simple inline functions to avoid hair in drivers. 1486 */ 1487 1488 #define _PCI_NOP(o, s, t) \ 1489 static inline int pci_##o##_config_##s(struct pci_dev *dev, \ 1490 int where, t val) \ 1491 { return PCIBIOS_FUNC_NOT_SUPPORTED; } 1492 1493 #define _PCI_NOP_ALL(o, x) _PCI_NOP(o, byte, u8 x) \ 1494 _PCI_NOP(o, word, u16 x) \ 1495 _PCI_NOP(o, dword, u32 x) 1496 _PCI_NOP_ALL(read, *) 1497 _PCI_NOP_ALL(write,) 1498 1499 static inline struct pci_dev *pci_get_device(unsigned int vendor, 1500 unsigned int device, 1501 struct pci_dev *from) 1502 { return NULL; } 1503 1504 static inline struct pci_dev *pci_get_subsys(unsigned int vendor, 1505 unsigned int device, 1506 unsigned int ss_vendor, 1507 unsigned int ss_device, 1508 struct pci_dev *from) 1509 { return NULL; } 1510 1511 static inline struct pci_dev *pci_get_class(unsigned int class, 1512 struct pci_dev *from) 1513 { return NULL; } 1514 1515 #define pci_dev_present(ids) (0) 1516 #define no_pci_devices() (1) 1517 #define pci_dev_put(dev) do { } while (0) 1518 1519 static inline void pci_set_master(struct pci_dev *dev) { } 1520 static inline int pci_enable_device(struct pci_dev *dev) { return -EIO; } 1521 static inline void pci_disable_device(struct pci_dev *dev) { } 1522 static inline int pci_assign_resource(struct pci_dev *dev, int i) 1523 { return -EBUSY; } 1524 static inline int __pci_register_driver(struct pci_driver *drv, 1525 struct module *owner) 1526 { return 0; } 1527 static inline int pci_register_driver(struct pci_driver *drv) 1528 { return 0; } 1529 static inline void pci_unregister_driver(struct pci_driver *drv) { } 1530 static inline int pci_find_capability(struct pci_dev *dev, int cap) 1531 { return 0; } 1532 static inline int pci_find_next_capability(struct pci_dev *dev, u8 post, 1533 int cap) 1534 { return 0; } 1535 static inline int pci_find_ext_capability(struct pci_dev *dev, int cap) 1536 { return 0; } 1537 1538 /* Power management related routines */ 1539 static inline int pci_save_state(struct pci_dev *dev) { return 0; } 1540 static inline void pci_restore_state(struct pci_dev *dev) { } 1541 static inline int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 1542 { return 0; } 1543 static inline int pci_wake_from_d3(struct pci_dev *dev, bool enable) 1544 { return 0; } 1545 static inline pci_power_t pci_choose_state(struct pci_dev *dev, 1546 pm_message_t state) 1547 { return PCI_D0; } 1548 static inline int pci_enable_wake(struct pci_dev *dev, pci_power_t state, 1549 int enable) 1550 { return 0; } 1551 1552 static inline int pci_request_regions(struct pci_dev *dev, const char *res_name) 1553 { return -EIO; } 1554 static inline void pci_release_regions(struct pci_dev *dev) { } 1555 1556 static inline unsigned long pci_address_to_pio(phys_addr_t addr) { return -1; } 1557 1558 static inline void pci_block_cfg_access(struct pci_dev *dev) { } 1559 static inline int pci_block_cfg_access_in_atomic(struct pci_dev *dev) 1560 { return 0; } 1561 static inline void pci_unblock_cfg_access(struct pci_dev *dev) { } 1562 1563 static inline struct pci_bus *pci_find_next_bus(const struct pci_bus *from) 1564 { return NULL; } 1565 static inline struct pci_dev *pci_get_slot(struct pci_bus *bus, 1566 unsigned int devfn) 1567 { return NULL; } 1568 static inline struct pci_dev *pci_get_bus_and_slot(unsigned int bus, 1569 unsigned int devfn) 1570 { return NULL; } 1571 1572 static inline int pci_domain_nr(struct pci_bus *bus) { return 0; } 1573 static inline struct pci_dev *pci_dev_get(struct pci_dev *dev) { return NULL; } 1574 static inline int pci_get_new_domain_nr(void) { return -ENOSYS; } 1575 1576 #define dev_is_pci(d) (false) 1577 #define dev_is_pf(d) (false) 1578 #define dev_num_vf(d) (0) 1579 #endif /* CONFIG_PCI */ 1580 1581 /* Include architecture-dependent settings and functions */ 1582 1583 #include <asm/pci.h> 1584 1585 #ifndef pci_root_bus_fwnode 1586 #define pci_root_bus_fwnode(bus) NULL 1587 #endif 1588 1589 /* these helpers provide future and backwards compatibility 1590 * for accessing popular PCI BAR info */ 1591 #define pci_resource_start(dev, bar) ((dev)->resource[(bar)].start) 1592 #define pci_resource_end(dev, bar) ((dev)->resource[(bar)].end) 1593 #define pci_resource_flags(dev, bar) ((dev)->resource[(bar)].flags) 1594 #define pci_resource_len(dev,bar) \ 1595 ((pci_resource_start((dev), (bar)) == 0 && \ 1596 pci_resource_end((dev), (bar)) == \ 1597 pci_resource_start((dev), (bar))) ? 0 : \ 1598 \ 1599 (pci_resource_end((dev), (bar)) - \ 1600 pci_resource_start((dev), (bar)) + 1)) 1601 1602 /* Similar to the helpers above, these manipulate per-pci_dev 1603 * driver-specific data. They are really just a wrapper around 1604 * the generic device structure functions of these calls. 1605 */ 1606 static inline void *pci_get_drvdata(struct pci_dev *pdev) 1607 { 1608 return dev_get_drvdata(&pdev->dev); 1609 } 1610 1611 static inline void pci_set_drvdata(struct pci_dev *pdev, void *data) 1612 { 1613 dev_set_drvdata(&pdev->dev, data); 1614 } 1615 1616 /* If you want to know what to call your pci_dev, ask this function. 1617 * Again, it's a wrapper around the generic device. 1618 */ 1619 static inline const char *pci_name(const struct pci_dev *pdev) 1620 { 1621 return dev_name(&pdev->dev); 1622 } 1623 1624 1625 /* Some archs don't want to expose struct resource to userland as-is 1626 * in sysfs and /proc 1627 */ 1628 #ifdef HAVE_ARCH_PCI_RESOURCE_TO_USER 1629 void pci_resource_to_user(const struct pci_dev *dev, int bar, 1630 const struct resource *rsrc, 1631 resource_size_t *start, resource_size_t *end); 1632 #else 1633 static inline void pci_resource_to_user(const struct pci_dev *dev, int bar, 1634 const struct resource *rsrc, resource_size_t *start, 1635 resource_size_t *end) 1636 { 1637 *start = rsrc->start; 1638 *end = rsrc->end; 1639 } 1640 #endif /* HAVE_ARCH_PCI_RESOURCE_TO_USER */ 1641 1642 1643 /* 1644 * The world is not perfect and supplies us with broken PCI devices. 1645 * For at least a part of these bugs we need a work-around, so both 1646 * generic (drivers/pci/quirks.c) and per-architecture code can define 1647 * fixup hooks to be called for particular buggy devices. 1648 */ 1649 1650 struct pci_fixup { 1651 u16 vendor; /* You can use PCI_ANY_ID here of course */ 1652 u16 device; /* You can use PCI_ANY_ID here of course */ 1653 u32 class; /* You can use PCI_ANY_ID here too */ 1654 unsigned int class_shift; /* should be 0, 8, 16 */ 1655 void (*hook)(struct pci_dev *dev); 1656 }; 1657 1658 enum pci_fixup_pass { 1659 pci_fixup_early, /* Before probing BARs */ 1660 pci_fixup_header, /* After reading configuration header */ 1661 pci_fixup_final, /* Final phase of device fixups */ 1662 pci_fixup_enable, /* pci_enable_device() time */ 1663 pci_fixup_resume, /* pci_device_resume() */ 1664 pci_fixup_suspend, /* pci_device_suspend() */ 1665 pci_fixup_resume_early, /* pci_device_resume_early() */ 1666 pci_fixup_suspend_late, /* pci_device_suspend_late() */ 1667 }; 1668 1669 /* Anonymous variables would be nice... */ 1670 #define DECLARE_PCI_FIXUP_SECTION(section, name, vendor, device, class, \ 1671 class_shift, hook) \ 1672 static const struct pci_fixup __PASTE(__pci_fixup_##name,__LINE__) __used \ 1673 __attribute__((__section__(#section), aligned((sizeof(void *))))) \ 1674 = { vendor, device, class, class_shift, hook }; 1675 1676 #define DECLARE_PCI_FIXUP_CLASS_EARLY(vendor, device, class, \ 1677 class_shift, hook) \ 1678 DECLARE_PCI_FIXUP_SECTION(.pci_fixup_early, \ 1679 hook, vendor, device, class, class_shift, hook) 1680 #define DECLARE_PCI_FIXUP_CLASS_HEADER(vendor, device, class, \ 1681 class_shift, hook) \ 1682 DECLARE_PCI_FIXUP_SECTION(.pci_fixup_header, \ 1683 hook, vendor, device, class, class_shift, hook) 1684 #define DECLARE_PCI_FIXUP_CLASS_FINAL(vendor, device, class, \ 1685 class_shift, hook) \ 1686 DECLARE_PCI_FIXUP_SECTION(.pci_fixup_final, \ 1687 hook, vendor, device, class, class_shift, hook) 1688 #define DECLARE_PCI_FIXUP_CLASS_ENABLE(vendor, device, class, \ 1689 class_shift, hook) \ 1690 DECLARE_PCI_FIXUP_SECTION(.pci_fixup_enable, \ 1691 hook, vendor, device, class, class_shift, hook) 1692 #define DECLARE_PCI_FIXUP_CLASS_RESUME(vendor, device, class, \ 1693 class_shift, hook) \ 1694 DECLARE_PCI_FIXUP_SECTION(.pci_fixup_resume, \ 1695 resume##hook, vendor, device, class, \ 1696 class_shift, hook) 1697 #define DECLARE_PCI_FIXUP_CLASS_RESUME_EARLY(vendor, device, class, \ 1698 class_shift, hook) \ 1699 DECLARE_PCI_FIXUP_SECTION(.pci_fixup_resume_early, \ 1700 resume_early##hook, vendor, device, \ 1701 class, class_shift, hook) 1702 #define DECLARE_PCI_FIXUP_CLASS_SUSPEND(vendor, device, class, \ 1703 class_shift, hook) \ 1704 DECLARE_PCI_FIXUP_SECTION(.pci_fixup_suspend, \ 1705 suspend##hook, vendor, device, class, \ 1706 class_shift, hook) 1707 #define DECLARE_PCI_FIXUP_CLASS_SUSPEND_LATE(vendor, device, class, \ 1708 class_shift, hook) \ 1709 DECLARE_PCI_FIXUP_SECTION(.pci_fixup_suspend_late, \ 1710 suspend_late##hook, vendor, device, \ 1711 class, class_shift, hook) 1712 1713 #define DECLARE_PCI_FIXUP_EARLY(vendor, device, hook) \ 1714 DECLARE_PCI_FIXUP_SECTION(.pci_fixup_early, \ 1715 hook, vendor, device, PCI_ANY_ID, 0, hook) 1716 #define DECLARE_PCI_FIXUP_HEADER(vendor, device, hook) \ 1717 DECLARE_PCI_FIXUP_SECTION(.pci_fixup_header, \ 1718 hook, vendor, device, PCI_ANY_ID, 0, hook) 1719 #define DECLARE_PCI_FIXUP_FINAL(vendor, device, hook) \ 1720 DECLARE_PCI_FIXUP_SECTION(.pci_fixup_final, \ 1721 hook, vendor, device, PCI_ANY_ID, 0, hook) 1722 #define DECLARE_PCI_FIXUP_ENABLE(vendor, device, hook) \ 1723 DECLARE_PCI_FIXUP_SECTION(.pci_fixup_enable, \ 1724 hook, vendor, device, PCI_ANY_ID, 0, hook) 1725 #define DECLARE_PCI_FIXUP_RESUME(vendor, device, hook) \ 1726 DECLARE_PCI_FIXUP_SECTION(.pci_fixup_resume, \ 1727 resume##hook, vendor, device, \ 1728 PCI_ANY_ID, 0, hook) 1729 #define DECLARE_PCI_FIXUP_RESUME_EARLY(vendor, device, hook) \ 1730 DECLARE_PCI_FIXUP_SECTION(.pci_fixup_resume_early, \ 1731 resume_early##hook, vendor, device, \ 1732 PCI_ANY_ID, 0, hook) 1733 #define DECLARE_PCI_FIXUP_SUSPEND(vendor, device, hook) \ 1734 DECLARE_PCI_FIXUP_SECTION(.pci_fixup_suspend, \ 1735 suspend##hook, vendor, device, \ 1736 PCI_ANY_ID, 0, hook) 1737 #define DECLARE_PCI_FIXUP_SUSPEND_LATE(vendor, device, hook) \ 1738 DECLARE_PCI_FIXUP_SECTION(.pci_fixup_suspend_late, \ 1739 suspend_late##hook, vendor, device, \ 1740 PCI_ANY_ID, 0, hook) 1741 1742 #ifdef CONFIG_PCI_QUIRKS 1743 void pci_fixup_device(enum pci_fixup_pass pass, struct pci_dev *dev); 1744 int pci_dev_specific_acs_enabled(struct pci_dev *dev, u16 acs_flags); 1745 int pci_dev_specific_enable_acs(struct pci_dev *dev); 1746 #else 1747 static inline void pci_fixup_device(enum pci_fixup_pass pass, 1748 struct pci_dev *dev) { } 1749 static inline int pci_dev_specific_acs_enabled(struct pci_dev *dev, 1750 u16 acs_flags) 1751 { 1752 return -ENOTTY; 1753 } 1754 static inline int pci_dev_specific_enable_acs(struct pci_dev *dev) 1755 { 1756 return -ENOTTY; 1757 } 1758 #endif 1759 1760 void __iomem *pcim_iomap(struct pci_dev *pdev, int bar, unsigned long maxlen); 1761 void pcim_iounmap(struct pci_dev *pdev, void __iomem *addr); 1762 void __iomem * const *pcim_iomap_table(struct pci_dev *pdev); 1763 int pcim_iomap_regions(struct pci_dev *pdev, int mask, const char *name); 1764 int pcim_iomap_regions_request_all(struct pci_dev *pdev, int mask, 1765 const char *name); 1766 void pcim_iounmap_regions(struct pci_dev *pdev, int mask); 1767 1768 extern int pci_pci_problems; 1769 #define PCIPCI_FAIL 1 /* No PCI PCI DMA */ 1770 #define PCIPCI_TRITON 2 1771 #define PCIPCI_NATOMA 4 1772 #define PCIPCI_VIAETBF 8 1773 #define PCIPCI_VSFX 16 1774 #define PCIPCI_ALIMAGIK 32 /* Need low latency setting */ 1775 #define PCIAGP_FAIL 64 /* No PCI to AGP DMA */ 1776 1777 extern unsigned long pci_cardbus_io_size; 1778 extern unsigned long pci_cardbus_mem_size; 1779 extern u8 pci_dfl_cache_line_size; 1780 extern u8 pci_cache_line_size; 1781 1782 extern unsigned long pci_hotplug_io_size; 1783 extern unsigned long pci_hotplug_mem_size; 1784 extern unsigned long pci_hotplug_bus_size; 1785 1786 /* Architecture-specific versions may override these (weak) */ 1787 void pcibios_disable_device(struct pci_dev *dev); 1788 void pcibios_set_master(struct pci_dev *dev); 1789 int pcibios_set_pcie_reset_state(struct pci_dev *dev, 1790 enum pcie_reset_state state); 1791 int pcibios_add_device(struct pci_dev *dev); 1792 void pcibios_release_device(struct pci_dev *dev); 1793 void pcibios_penalize_isa_irq(int irq, int active); 1794 int pcibios_alloc_irq(struct pci_dev *dev); 1795 void pcibios_free_irq(struct pci_dev *dev); 1796 1797 #ifdef CONFIG_HIBERNATE_CALLBACKS 1798 extern struct dev_pm_ops pcibios_pm_ops; 1799 #endif 1800 1801 #if defined(CONFIG_PCI_MMCONFIG) || defined(CONFIG_ACPI_MCFG) 1802 void __init pci_mmcfg_early_init(void); 1803 void __init pci_mmcfg_late_init(void); 1804 #else 1805 static inline void pci_mmcfg_early_init(void) { } 1806 static inline void pci_mmcfg_late_init(void) { } 1807 #endif 1808 1809 int pci_ext_cfg_avail(void); 1810 1811 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar); 1812 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar); 1813 1814 #ifdef CONFIG_PCI_IOV 1815 int pci_iov_virtfn_bus(struct pci_dev *dev, int id); 1816 int pci_iov_virtfn_devfn(struct pci_dev *dev, int id); 1817 1818 int pci_enable_sriov(struct pci_dev *dev, int nr_virtfn); 1819 void pci_disable_sriov(struct pci_dev *dev); 1820 int pci_iov_add_virtfn(struct pci_dev *dev, int id, int reset); 1821 void pci_iov_remove_virtfn(struct pci_dev *dev, int id, int reset); 1822 int pci_num_vf(struct pci_dev *dev); 1823 int pci_vfs_assigned(struct pci_dev *dev); 1824 int pci_sriov_set_totalvfs(struct pci_dev *dev, u16 numvfs); 1825 int pci_sriov_get_totalvfs(struct pci_dev *dev); 1826 resource_size_t pci_iov_resource_size(struct pci_dev *dev, int resno); 1827 #else 1828 static inline int pci_iov_virtfn_bus(struct pci_dev *dev, int id) 1829 { 1830 return -ENOSYS; 1831 } 1832 static inline int pci_iov_virtfn_devfn(struct pci_dev *dev, int id) 1833 { 1834 return -ENOSYS; 1835 } 1836 static inline int pci_enable_sriov(struct pci_dev *dev, int nr_virtfn) 1837 { return -ENODEV; } 1838 static inline int pci_iov_add_virtfn(struct pci_dev *dev, int id, int reset) 1839 { 1840 return -ENOSYS; 1841 } 1842 static inline void pci_iov_remove_virtfn(struct pci_dev *dev, 1843 int id, int reset) { } 1844 static inline void pci_disable_sriov(struct pci_dev *dev) { } 1845 static inline int pci_num_vf(struct pci_dev *dev) { return 0; } 1846 static inline int pci_vfs_assigned(struct pci_dev *dev) 1847 { return 0; } 1848 static inline int pci_sriov_set_totalvfs(struct pci_dev *dev, u16 numvfs) 1849 { return 0; } 1850 static inline int pci_sriov_get_totalvfs(struct pci_dev *dev) 1851 { return 0; } 1852 static inline resource_size_t pci_iov_resource_size(struct pci_dev *dev, int resno) 1853 { return 0; } 1854 #endif 1855 1856 #if defined(CONFIG_HOTPLUG_PCI) || defined(CONFIG_HOTPLUG_PCI_MODULE) 1857 void pci_hp_create_module_link(struct pci_slot *pci_slot); 1858 void pci_hp_remove_module_link(struct pci_slot *pci_slot); 1859 #endif 1860 1861 /** 1862 * pci_pcie_cap - get the saved PCIe capability offset 1863 * @dev: PCI device 1864 * 1865 * PCIe capability offset is calculated at PCI device initialization 1866 * time and saved in the data structure. This function returns saved 1867 * PCIe capability offset. Using this instead of pci_find_capability() 1868 * reduces unnecessary search in the PCI configuration space. If you 1869 * need to calculate PCIe capability offset from raw device for some 1870 * reasons, please use pci_find_capability() instead. 1871 */ 1872 static inline int pci_pcie_cap(struct pci_dev *dev) 1873 { 1874 return dev->pcie_cap; 1875 } 1876 1877 /** 1878 * pci_is_pcie - check if the PCI device is PCI Express capable 1879 * @dev: PCI device 1880 * 1881 * Returns: true if the PCI device is PCI Express capable, false otherwise. 1882 */ 1883 static inline bool pci_is_pcie(struct pci_dev *dev) 1884 { 1885 return pci_pcie_cap(dev); 1886 } 1887 1888 /** 1889 * pcie_caps_reg - get the PCIe Capabilities Register 1890 * @dev: PCI device 1891 */ 1892 static inline u16 pcie_caps_reg(const struct pci_dev *dev) 1893 { 1894 return dev->pcie_flags_reg; 1895 } 1896 1897 /** 1898 * pci_pcie_type - get the PCIe device/port type 1899 * @dev: PCI device 1900 */ 1901 static inline int pci_pcie_type(const struct pci_dev *dev) 1902 { 1903 return (pcie_caps_reg(dev) & PCI_EXP_FLAGS_TYPE) >> 4; 1904 } 1905 1906 void pci_request_acs(void); 1907 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags); 1908 bool pci_acs_path_enabled(struct pci_dev *start, 1909 struct pci_dev *end, u16 acs_flags); 1910 1911 #define PCI_VPD_LRDT 0x80 /* Large Resource Data Type */ 1912 #define PCI_VPD_LRDT_ID(x) ((x) | PCI_VPD_LRDT) 1913 1914 /* Large Resource Data Type Tag Item Names */ 1915 #define PCI_VPD_LTIN_ID_STRING 0x02 /* Identifier String */ 1916 #define PCI_VPD_LTIN_RO_DATA 0x10 /* Read-Only Data */ 1917 #define PCI_VPD_LTIN_RW_DATA 0x11 /* Read-Write Data */ 1918 1919 #define PCI_VPD_LRDT_ID_STRING PCI_VPD_LRDT_ID(PCI_VPD_LTIN_ID_STRING) 1920 #define PCI_VPD_LRDT_RO_DATA PCI_VPD_LRDT_ID(PCI_VPD_LTIN_RO_DATA) 1921 #define PCI_VPD_LRDT_RW_DATA PCI_VPD_LRDT_ID(PCI_VPD_LTIN_RW_DATA) 1922 1923 /* Small Resource Data Type Tag Item Names */ 1924 #define PCI_VPD_STIN_END 0x0f /* End */ 1925 1926 #define PCI_VPD_SRDT_END (PCI_VPD_STIN_END << 3) 1927 1928 #define PCI_VPD_SRDT_TIN_MASK 0x78 1929 #define PCI_VPD_SRDT_LEN_MASK 0x07 1930 #define PCI_VPD_LRDT_TIN_MASK 0x7f 1931 1932 #define PCI_VPD_LRDT_TAG_SIZE 3 1933 #define PCI_VPD_SRDT_TAG_SIZE 1 1934 1935 #define PCI_VPD_INFO_FLD_HDR_SIZE 3 1936 1937 #define PCI_VPD_RO_KEYWORD_PARTNO "PN" 1938 #define PCI_VPD_RO_KEYWORD_MFR_ID "MN" 1939 #define PCI_VPD_RO_KEYWORD_VENDOR0 "V0" 1940 #define PCI_VPD_RO_KEYWORD_CHKSUM "RV" 1941 1942 /** 1943 * pci_vpd_lrdt_size - Extracts the Large Resource Data Type length 1944 * @lrdt: Pointer to the beginning of the Large Resource Data Type tag 1945 * 1946 * Returns the extracted Large Resource Data Type length. 1947 */ 1948 static inline u16 pci_vpd_lrdt_size(const u8 *lrdt) 1949 { 1950 return (u16)lrdt[1] + ((u16)lrdt[2] << 8); 1951 } 1952 1953 /** 1954 * pci_vpd_lrdt_tag - Extracts the Large Resource Data Type Tag Item 1955 * @lrdt: Pointer to the beginning of the Large Resource Data Type tag 1956 * 1957 * Returns the extracted Large Resource Data Type Tag item. 1958 */ 1959 static inline u16 pci_vpd_lrdt_tag(const u8 *lrdt) 1960 { 1961 return (u16)(lrdt[0] & PCI_VPD_LRDT_TIN_MASK); 1962 } 1963 1964 /** 1965 * pci_vpd_srdt_size - Extracts the Small Resource Data Type length 1966 * @lrdt: Pointer to the beginning of the Small Resource Data Type tag 1967 * 1968 * Returns the extracted Small Resource Data Type length. 1969 */ 1970 static inline u8 pci_vpd_srdt_size(const u8 *srdt) 1971 { 1972 return (*srdt) & PCI_VPD_SRDT_LEN_MASK; 1973 } 1974 1975 /** 1976 * pci_vpd_srdt_tag - Extracts the Small Resource Data Type Tag Item 1977 * @lrdt: Pointer to the beginning of the Small Resource Data Type tag 1978 * 1979 * Returns the extracted Small Resource Data Type Tag Item. 1980 */ 1981 static inline u8 pci_vpd_srdt_tag(const u8 *srdt) 1982 { 1983 return ((*srdt) & PCI_VPD_SRDT_TIN_MASK) >> 3; 1984 } 1985 1986 /** 1987 * pci_vpd_info_field_size - Extracts the information field length 1988 * @lrdt: Pointer to the beginning of an information field header 1989 * 1990 * Returns the extracted information field length. 1991 */ 1992 static inline u8 pci_vpd_info_field_size(const u8 *info_field) 1993 { 1994 return info_field[2]; 1995 } 1996 1997 /** 1998 * pci_vpd_find_tag - Locates the Resource Data Type tag provided 1999 * @buf: Pointer to buffered vpd data 2000 * @off: The offset into the buffer at which to begin the search 2001 * @len: The length of the vpd buffer 2002 * @rdt: The Resource Data Type to search for 2003 * 2004 * Returns the index where the Resource Data Type was found or 2005 * -ENOENT otherwise. 2006 */ 2007 int pci_vpd_find_tag(const u8 *buf, unsigned int off, unsigned int len, u8 rdt); 2008 2009 /** 2010 * pci_vpd_find_info_keyword - Locates an information field keyword in the VPD 2011 * @buf: Pointer to buffered vpd data 2012 * @off: The offset into the buffer at which to begin the search 2013 * @len: The length of the buffer area, relative to off, in which to search 2014 * @kw: The keyword to search for 2015 * 2016 * Returns the index where the information field keyword was found or 2017 * -ENOENT otherwise. 2018 */ 2019 int pci_vpd_find_info_keyword(const u8 *buf, unsigned int off, 2020 unsigned int len, const char *kw); 2021 2022 /* PCI <-> OF binding helpers */ 2023 #ifdef CONFIG_OF 2024 struct device_node; 2025 struct irq_domain; 2026 void pci_set_of_node(struct pci_dev *dev); 2027 void pci_release_of_node(struct pci_dev *dev); 2028 void pci_set_bus_of_node(struct pci_bus *bus); 2029 void pci_release_bus_of_node(struct pci_bus *bus); 2030 struct irq_domain *pci_host_bridge_of_msi_domain(struct pci_bus *bus); 2031 2032 /* Arch may override this (weak) */ 2033 struct device_node *pcibios_get_phb_of_node(struct pci_bus *bus); 2034 2035 static inline struct device_node * 2036 pci_device_to_OF_node(const struct pci_dev *pdev) 2037 { 2038 return pdev ? pdev->dev.of_node : NULL; 2039 } 2040 2041 static inline struct device_node *pci_bus_to_OF_node(struct pci_bus *bus) 2042 { 2043 return bus ? bus->dev.of_node : NULL; 2044 } 2045 2046 #else /* CONFIG_OF */ 2047 static inline void pci_set_of_node(struct pci_dev *dev) { } 2048 static inline void pci_release_of_node(struct pci_dev *dev) { } 2049 static inline void pci_set_bus_of_node(struct pci_bus *bus) { } 2050 static inline void pci_release_bus_of_node(struct pci_bus *bus) { } 2051 static inline struct device_node * 2052 pci_device_to_OF_node(const struct pci_dev *pdev) { return NULL; } 2053 static inline struct irq_domain * 2054 pci_host_bridge_of_msi_domain(struct pci_bus *bus) { return NULL; } 2055 #endif /* CONFIG_OF */ 2056 2057 #ifdef CONFIG_ACPI 2058 struct irq_domain *pci_host_bridge_acpi_msi_domain(struct pci_bus *bus); 2059 2060 void 2061 pci_msi_register_fwnode_provider(struct fwnode_handle *(*fn)(struct device *)); 2062 #else 2063 static inline struct irq_domain * 2064 pci_host_bridge_acpi_msi_domain(struct pci_bus *bus) { return NULL; } 2065 #endif 2066 2067 #ifdef CONFIG_EEH 2068 static inline struct eeh_dev *pci_dev_to_eeh_dev(struct pci_dev *pdev) 2069 { 2070 return pdev->dev.archdata.edev; 2071 } 2072 #endif 2073 2074 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn); 2075 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2); 2076 int pci_for_each_dma_alias(struct pci_dev *pdev, 2077 int (*fn)(struct pci_dev *pdev, 2078 u16 alias, void *data), void *data); 2079 2080 /* helper functions for operation of device flag */ 2081 static inline void pci_set_dev_assigned(struct pci_dev *pdev) 2082 { 2083 pdev->dev_flags |= PCI_DEV_FLAGS_ASSIGNED; 2084 } 2085 static inline void pci_clear_dev_assigned(struct pci_dev *pdev) 2086 { 2087 pdev->dev_flags &= ~PCI_DEV_FLAGS_ASSIGNED; 2088 } 2089 static inline bool pci_is_dev_assigned(struct pci_dev *pdev) 2090 { 2091 return (pdev->dev_flags & PCI_DEV_FLAGS_ASSIGNED) == PCI_DEV_FLAGS_ASSIGNED; 2092 } 2093 2094 /** 2095 * pci_ari_enabled - query ARI forwarding status 2096 * @bus: the PCI bus 2097 * 2098 * Returns true if ARI forwarding is enabled. 2099 */ 2100 static inline bool pci_ari_enabled(struct pci_bus *bus) 2101 { 2102 return bus->self && bus->self->ari_enabled; 2103 } 2104 2105 /* provide the legacy pci_dma_* API */ 2106 #include <linux/pci-dma-compat.h> 2107 2108 #endif /* LINUX_PCI_H */
1 /* 2 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk). 3 * 4 * (C) SGI 2006, Christoph Lameter 5 * Cleaned up and restructured to ease the addition of alternative 6 * implementations of SLAB allocators. 7 * (C) Linux Foundation 2008-2013 8 * Unified interface for all slab allocators 9 */ 10 11 #ifndef _LINUX_SLAB_H 12 #define _LINUX_SLAB_H 13 14 #include <linux/gfp.h> 15 #include <linux/types.h> 16 #include <linux/workqueue.h> 17 18 19 /* 20 * Flags to pass to kmem_cache_create(). 21 * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set. 22 */ 23 #define SLAB_CONSISTENCY_CHECKS 0x00000100UL /* DEBUG: Perform (expensive) checks on alloc/free */ 24 #define SLAB_RED_ZONE 0x00000400UL /* DEBUG: Red zone objs in a cache */ 25 #define SLAB_POISON 0x00000800UL /* DEBUG: Poison objects */ 26 #define SLAB_HWCACHE_ALIGN 0x00002000UL /* Align objs on cache lines */ 27 #define SLAB_CACHE_DMA 0x00004000UL /* Use GFP_DMA memory */ 28 #define SLAB_STORE_USER 0x00010000UL /* DEBUG: Store the last owner for bug hunting */ 29 #define SLAB_PANIC 0x00040000UL /* Panic if kmem_cache_create() fails */ 30 /* 31 * SLAB_DESTROY_BY_RCU - **WARNING** READ THIS! 32 * 33 * This delays freeing the SLAB page by a grace period, it does _NOT_ 34 * delay object freeing. This means that if you do kmem_cache_free() 35 * that memory location is free to be reused at any time. Thus it may 36 * be possible to see another object there in the same RCU grace period. 37 * 38 * This feature only ensures the memory location backing the object 39 * stays valid, the trick to using this is relying on an independent 40 * object validation pass. Something like: 41 * 42 * rcu_read_lock() 43 * again: 44 * obj = lockless_lookup(key); 45 * if (obj) { 46 * if (!try_get_ref(obj)) // might fail for free objects 47 * goto again; 48 * 49 * if (obj->key != key) { // not the object we expected 50 * put_ref(obj); 51 * goto again; 52 * } 53 * } 54 * rcu_read_unlock(); 55 * 56 * This is useful if we need to approach a kernel structure obliquely, 57 * from its address obtained without the usual locking. We can lock 58 * the structure to stabilize it and check it's still at the given address, 59 * only if we can be sure that the memory has not been meanwhile reused 60 * for some other kind of object (which our subsystem's lock might corrupt). 61 * 62 * rcu_read_lock before reading the address, then rcu_read_unlock after 63 * taking the spinlock within the structure expected at that address. 64 */ 65 #define SLAB_DESTROY_BY_RCU 0x00080000UL /* Defer freeing slabs to RCU */ 66 #define SLAB_MEM_SPREAD 0x00100000UL /* Spread some memory over cpuset */ 67 #define SLAB_TRACE 0x00200000UL /* Trace allocations and frees */ 68 69 /* Flag to prevent checks on free */ 70 #ifdef CONFIG_DEBUG_OBJECTS 71 # define SLAB_DEBUG_OBJECTS 0x00400000UL 72 #else 73 # define SLAB_DEBUG_OBJECTS 0x00000000UL 74 #endif 75 76 #define SLAB_NOLEAKTRACE 0x00800000UL /* Avoid kmemleak tracing */ 77 78 /* Don't track use of uninitialized memory */ 79 #ifdef CONFIG_KMEMCHECK 80 # define SLAB_NOTRACK 0x01000000UL 81 #else 82 # define SLAB_NOTRACK 0x00000000UL 83 #endif 84 #ifdef CONFIG_FAILSLAB 85 # define SLAB_FAILSLAB 0x02000000UL /* Fault injection mark */ 86 #else 87 # define SLAB_FAILSLAB 0x00000000UL 88 #endif 89 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB) 90 # define SLAB_ACCOUNT 0x04000000UL /* Account to memcg */ 91 #else 92 # define SLAB_ACCOUNT 0x00000000UL 93 #endif 94 95 #ifdef CONFIG_KASAN 96 #define SLAB_KASAN 0x08000000UL 97 #else 98 #define SLAB_KASAN 0x00000000UL 99 #endif 100 101 /* The following flags affect the page allocator grouping pages by mobility */ 102 #define SLAB_RECLAIM_ACCOUNT 0x00020000UL /* Objects are reclaimable */ 103 #define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */ 104 /* 105 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests. 106 * 107 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault. 108 * 109 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can. 110 * Both make kfree a no-op. 111 */ 112 #define ZERO_SIZE_PTR ((void *)16) 113 114 #define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \ 115 (unsigned long)ZERO_SIZE_PTR) 116 117 #include <linux/kmemleak.h> 118 #include <linux/kasan.h> 119 120 struct mem_cgroup; 121 /* 122 * struct kmem_cache related prototypes 123 */ 124 void __init kmem_cache_init(void); 125 bool slab_is_available(void); 126 127 struct kmem_cache *kmem_cache_create(const char *, size_t, size_t, 128 unsigned long, 129 void (*)(void *)); 130 void kmem_cache_destroy(struct kmem_cache *); 131 int kmem_cache_shrink(struct kmem_cache *); 132 133 void memcg_create_kmem_cache(struct mem_cgroup *, struct kmem_cache *); 134 void memcg_deactivate_kmem_caches(struct mem_cgroup *); 135 void memcg_destroy_kmem_caches(struct mem_cgroup *); 136 137 /* 138 * Please use this macro to create slab caches. Simply specify the 139 * name of the structure and maybe some flags that are listed above. 140 * 141 * The alignment of the struct determines object alignment. If you 142 * f.e. add ____cacheline_aligned_in_smp to the struct declaration 143 * then the objects will be properly aligned in SMP configurations. 144 */ 145 #define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\ 146 sizeof(struct __struct), __alignof__(struct __struct),\ 147 (__flags), NULL) 148 149 /* 150 * Common kmalloc functions provided by all allocators 151 */ 152 void * __must_check __krealloc(const void *, size_t, gfp_t); 153 void * __must_check krealloc(const void *, size_t, gfp_t); 154 void kfree(const void *); 155 void kzfree(const void *); 156 size_t ksize(const void *); 157 158 /* 159 * Some archs want to perform DMA into kmalloc caches and need a guaranteed 160 * alignment larger than the alignment of a 64-bit integer. 161 * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that. 162 */ 163 #if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8 164 #define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN 165 #define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN 166 #define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN) 167 #else 168 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) 169 #endif 170 171 /* 172 * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment. 173 * Intended for arches that get misalignment faults even for 64 bit integer 174 * aligned buffers. 175 */ 176 #ifndef ARCH_SLAB_MINALIGN 177 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long) 178 #endif 179 180 /* 181 * kmalloc and friends return ARCH_KMALLOC_MINALIGN aligned 182 * pointers. kmem_cache_alloc and friends return ARCH_SLAB_MINALIGN 183 * aligned pointers. 184 */ 185 #define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN) 186 #define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN) 187 #define __assume_page_alignment __assume_aligned(PAGE_SIZE) 188 189 /* 190 * Kmalloc array related definitions 191 */ 192 193 #ifdef CONFIG_SLAB 194 /* 195 * The largest kmalloc size supported by the SLAB allocators is 196 * 32 megabyte (2^25) or the maximum allocatable page order if that is 197 * less than 32 MB. 198 * 199 * WARNING: Its not easy to increase this value since the allocators have 200 * to do various tricks to work around compiler limitations in order to 201 * ensure proper constant folding. 202 */ 203 #define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \ 204 (MAX_ORDER + PAGE_SHIFT - 1) : 25) 205 #define KMALLOC_SHIFT_MAX KMALLOC_SHIFT_HIGH 206 #ifndef KMALLOC_SHIFT_LOW 207 #define KMALLOC_SHIFT_LOW 5 208 #endif 209 #endif 210 211 #ifdef CONFIG_SLUB 212 /* 213 * SLUB directly allocates requests fitting in to an order-1 page 214 * (PAGE_SIZE*2). Larger requests are passed to the page allocator. 215 */ 216 #define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1) 217 #define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT) 218 #ifndef KMALLOC_SHIFT_LOW 219 #define KMALLOC_SHIFT_LOW 3 220 #endif 221 #endif 222 223 #ifdef CONFIG_SLOB 224 /* 225 * SLOB passes all requests larger than one page to the page allocator. 226 * No kmalloc array is necessary since objects of different sizes can 227 * be allocated from the same page. 228 */ 229 #define KMALLOC_SHIFT_HIGH PAGE_SHIFT 230 #define KMALLOC_SHIFT_MAX 30 231 #ifndef KMALLOC_SHIFT_LOW 232 #define KMALLOC_SHIFT_LOW 3 233 #endif 234 #endif 235 236 /* Maximum allocatable size */ 237 #define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_MAX) 238 /* Maximum size for which we actually use a slab cache */ 239 #define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLOC_SHIFT_HIGH) 240 /* Maximum order allocatable via the slab allocagtor */ 241 #define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_MAX - PAGE_SHIFT) 242 243 /* 244 * Kmalloc subsystem. 245 */ 246 #ifndef KMALLOC_MIN_SIZE 247 #define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW) 248 #endif 249 250 /* 251 * This restriction comes from byte sized index implementation. 252 * Page size is normally 2^12 bytes and, in this case, if we want to use 253 * byte sized index which can represent 2^8 entries, the size of the object 254 * should be equal or greater to 2^12 / 2^8 = 2^4 = 16. 255 * If minimum size of kmalloc is less than 16, we use it as minimum object 256 * size and give up to use byte sized index. 257 */ 258 #define SLAB_OBJ_MIN_SIZE (KMALLOC_MIN_SIZE < 16 ? \ 259 (KMALLOC_MIN_SIZE) : 16) 260 261 #ifndef CONFIG_SLOB 262 extern struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1]; 263 #ifdef CONFIG_ZONE_DMA 264 extern struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1]; 265 #endif 266 267 /* 268 * Figure out which kmalloc slab an allocation of a certain size 269 * belongs to. 270 * 0 = zero alloc 271 * 1 = 65 .. 96 bytes 272 * 2 = 129 .. 192 bytes 273 * n = 2^(n-1)+1 .. 2^n 274 */ 275 static __always_inline int kmalloc_index(size_t size) 276 { 277 if (!size) 278 return 0; 279 280 if (size <= KMALLOC_MIN_SIZE) 281 return KMALLOC_SHIFT_LOW; 282 283 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96) 284 return 1; 285 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192) 286 return 2; 287 if (size <= 8) return 3; 288 if (size <= 16) return 4; 289 if (size <= 32) return 5; 290 if (size <= 64) return 6; 291 if (size <= 128) return 7; 292 if (size <= 256) return 8; 293 if (size <= 512) return 9; 294 if (size <= 1024) return 10; 295 if (size <= 2 * 1024) return 11; 296 if (size <= 4 * 1024) return 12; 297 if (size <= 8 * 1024) return 13; 298 if (size <= 16 * 1024) return 14; 299 if (size <= 32 * 1024) return 15; 300 if (size <= 64 * 1024) return 16; 301 if (size <= 128 * 1024) return 17; 302 if (size <= 256 * 1024) return 18; 303 if (size <= 512 * 1024) return 19; 304 if (size <= 1024 * 1024) return 20; 305 if (size <= 2 * 1024 * 1024) return 21; 306 if (size <= 4 * 1024 * 1024) return 22; 307 if (size <= 8 * 1024 * 1024) return 23; 308 if (size <= 16 * 1024 * 1024) return 24; 309 if (size <= 32 * 1024 * 1024) return 25; 310 if (size <= 64 * 1024 * 1024) return 26; 311 BUG(); 312 313 /* Will never be reached. Needed because the compiler may complain */ 314 return -1; 315 } 316 #endif /* !CONFIG_SLOB */ 317 318 void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment __malloc; 319 void *kmem_cache_alloc(struct kmem_cache *, gfp_t flags) __assume_slab_alignment __malloc; 320 void kmem_cache_free(struct kmem_cache *, void *); 321 322 /* 323 * Bulk allocation and freeing operations. These are accelerated in an 324 * allocator specific way to avoid taking locks repeatedly or building 325 * metadata structures unnecessarily. 326 * 327 * Note that interrupts must be enabled when calling these functions. 328 */ 329 void kmem_cache_free_bulk(struct kmem_cache *, size_t, void **); 330 int kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **); 331 332 /* 333 * Caller must not use kfree_bulk() on memory not originally allocated 334 * by kmalloc(), because the SLOB allocator cannot handle this. 335 */ 336 static __always_inline void kfree_bulk(size_t size, void **p) 337 { 338 kmem_cache_free_bulk(NULL, size, p); 339 } 340 341 #ifdef CONFIG_NUMA 342 void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment __malloc; 343 void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node) __assume_slab_alignment __malloc; 344 #else 345 static __always_inline void *__kmalloc_node(size_t size, gfp_t flags, int node) 346 { 347 return __kmalloc(size, flags); 348 } 349 350 static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node) 351 { 352 return kmem_cache_alloc(s, flags); 353 } 354 #endif 355 356 #ifdef CONFIG_TRACING 357 extern void *kmem_cache_alloc_trace(struct kmem_cache *, gfp_t, size_t) __assume_slab_alignment __malloc; 358 359 #ifdef CONFIG_NUMA 360 extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 361 gfp_t gfpflags, 362 int node, size_t size) __assume_slab_alignment __malloc; 363 #else 364 static __always_inline void * 365 kmem_cache_alloc_node_trace(struct kmem_cache *s, 366 gfp_t gfpflags, 367 int node, size_t size) 368 { 369 return kmem_cache_alloc_trace(s, gfpflags, size); 370 } 371 #endif /* CONFIG_NUMA */ 372 373 #else /* CONFIG_TRACING */ 374 static __always_inline void *kmem_cache_alloc_trace(struct kmem_cache *s, 375 gfp_t flags, size_t size) 376 { 377 void *ret = kmem_cache_alloc(s, flags); 378 379 kasan_kmalloc(s, ret, size, flags); 380 return ret; 381 } 382 383 static __always_inline void * 384 kmem_cache_alloc_node_trace(struct kmem_cache *s, 385 gfp_t gfpflags, 386 int node, size_t size) 387 { 388 void *ret = kmem_cache_alloc_node(s, gfpflags, node); 389 390 kasan_kmalloc(s, ret, size, gfpflags); 391 return ret; 392 } 393 #endif /* CONFIG_TRACING */ 394 395 extern void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc; 396 397 #ifdef CONFIG_TRACING 398 extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc; 399 #else 400 static __always_inline void * 401 kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) 402 { 403 return kmalloc_order(size, flags, order); 404 } 405 #endif 406 407 static __always_inline void *kmalloc_large(size_t size, gfp_t flags) 408 { 409 unsigned int order = get_order(size); 410 return kmalloc_order_trace(size, flags, order); 411 } 412 413 /** 414 * kmalloc - allocate memory 415 * @size: how many bytes of memory are required. 416 * @flags: the type of memory to allocate. 417 * 418 * kmalloc is the normal method of allocating memory 419 * for objects smaller than page size in the kernel. 420 * 421 * The @flags argument may be one of: 422 * 423 * %GFP_USER - Allocate memory on behalf of user. May sleep. 424 * 425 * %GFP_KERNEL - Allocate normal kernel ram. May sleep. 426 * 427 * %GFP_ATOMIC - Allocation will not sleep. May use emergency pools. 428 * For example, use this inside interrupt handlers. 429 * 430 * %GFP_HIGHUSER - Allocate pages from high memory. 431 * 432 * %GFP_NOIO - Do not do any I/O at all while trying to get memory. 433 * 434 * %GFP_NOFS - Do not make any fs calls while trying to get memory. 435 * 436 * %GFP_NOWAIT - Allocation will not sleep. 437 * 438 * %__GFP_THISNODE - Allocate node-local memory only. 439 * 440 * %GFP_DMA - Allocation suitable for DMA. 441 * Should only be used for kmalloc() caches. Otherwise, use a 442 * slab created with SLAB_DMA. 443 * 444 * Also it is possible to set different flags by OR'ing 445 * in one or more of the following additional @flags: 446 * 447 * %__GFP_COLD - Request cache-cold pages instead of 448 * trying to return cache-warm pages. 449 * 450 * %__GFP_HIGH - This allocation has high priority and may use emergency pools. 451 * 452 * %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail 453 * (think twice before using). 454 * 455 * %__GFP_NORETRY - If memory is not immediately available, 456 * then give up at once. 457 * 458 * %__GFP_NOWARN - If allocation fails, don't issue any warnings. 459 * 460 * %__GFP_REPEAT - If allocation fails initially, try once more before failing. 461 * 462 * There are other flags available as well, but these are not intended 463 * for general use, and so are not documented here. For a full list of 464 * potential flags, always refer to linux/gfp.h. 465 */ 466 static __always_inline void *kmalloc(size_t size, gfp_t flags) 467 { 468 if (__builtin_constant_p(size)) { 469 if (size > KMALLOC_MAX_CACHE_SIZE) 470 return kmalloc_large(size, flags); 471 #ifndef CONFIG_SLOB 472 if (!(flags & GFP_DMA)) { 473 int index = kmalloc_index(size); 474 475 if (!index) 476 return ZERO_SIZE_PTR; 477 478 return kmem_cache_alloc_trace(kmalloc_caches[index], 479 flags, size); 480 } 481 #endif 482 } 483 return __kmalloc(size, flags); 484 } 485 486 /* 487 * Determine size used for the nth kmalloc cache. 488 * return size or 0 if a kmalloc cache for that 489 * size does not exist 490 */ 491 static __always_inline int kmalloc_size(int n) 492 { 493 #ifndef CONFIG_SLOB 494 if (n > 2) 495 return 1 << n; 496 497 if (n == 1 && KMALLOC_MIN_SIZE <= 32) 498 return 96; 499 500 if (n == 2 && KMALLOC_MIN_SIZE <= 64) 501 return 192; 502 #endif 503 return 0; 504 } 505 506 static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node) 507 { 508 #ifndef CONFIG_SLOB 509 if (__builtin_constant_p(size) && 510 size <= KMALLOC_MAX_CACHE_SIZE && !(flags & GFP_DMA)) { 511 int i = kmalloc_index(size); 512 513 if (!i) 514 return ZERO_SIZE_PTR; 515 516 return kmem_cache_alloc_node_trace(kmalloc_caches[i], 517 flags, node, size); 518 } 519 #endif 520 return __kmalloc_node(size, flags, node); 521 } 522 523 struct memcg_cache_array { 524 struct rcu_head rcu; 525 struct kmem_cache *entries[0]; 526 }; 527 528 /* 529 * This is the main placeholder for memcg-related information in kmem caches. 530 * Both the root cache and the child caches will have it. For the root cache, 531 * this will hold a dynamically allocated array large enough to hold 532 * information about the currently limited memcgs in the system. To allow the 533 * array to be accessed without taking any locks, on relocation we free the old 534 * version only after a grace period. 535 * 536 * Child caches will hold extra metadata needed for its operation. Fields are: 537 * 538 * @memcg: pointer to the memcg this cache belongs to 539 * @root_cache: pointer to the global, root cache, this cache was derived from 540 * 541 * Both root and child caches of the same kind are linked into a list chained 542 * through @list. 543 */ 544 struct memcg_cache_params { 545 bool is_root_cache; 546 struct list_head list; 547 union { 548 struct memcg_cache_array __rcu *memcg_caches; 549 struct { 550 struct mem_cgroup *memcg; 551 struct kmem_cache *root_cache; 552 }; 553 }; 554 }; 555 556 int memcg_update_all_caches(int num_memcgs); 557 558 /** 559 * kmalloc_array - allocate memory for an array. 560 * @n: number of elements. 561 * @size: element size. 562 * @flags: the type of memory to allocate (see kmalloc). 563 */ 564 static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags) 565 { 566 if (size != 0 && n > SIZE_MAX / size) 567 return NULL; 568 if (__builtin_constant_p(n) && __builtin_constant_p(size)) 569 return kmalloc(n * size, flags); 570 return __kmalloc(n * size, flags); 571 } 572 573 /** 574 * kcalloc - allocate memory for an array. The memory is set to zero. 575 * @n: number of elements. 576 * @size: element size. 577 * @flags: the type of memory to allocate (see kmalloc). 578 */ 579 static inline void *kcalloc(size_t n, size_t size, gfp_t flags) 580 { 581 return kmalloc_array(n, size, flags | __GFP_ZERO); 582 } 583 584 /* 585 * kmalloc_track_caller is a special version of kmalloc that records the 586 * calling function of the routine calling it for slab leak tracking instead 587 * of just the calling function (confusing, eh?). 588 * It's useful when the call to kmalloc comes from a widely-used standard 589 * allocator where we care about the real place the memory allocation 590 * request comes from. 591 */ 592 extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long); 593 #define kmalloc_track_caller(size, flags) \ 594 __kmalloc_track_caller(size, flags, _RET_IP_) 595 596 #ifdef CONFIG_NUMA 597 extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long); 598 #define kmalloc_node_track_caller(size, flags, node) \ 599 __kmalloc_node_track_caller(size, flags, node, \ 600 _RET_IP_) 601 602 #else /* CONFIG_NUMA */ 603 604 #define kmalloc_node_track_caller(size, flags, node) \ 605 kmalloc_track_caller(size, flags) 606 607 #endif /* CONFIG_NUMA */ 608 609 /* 610 * Shortcuts 611 */ 612 static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags) 613 { 614 return kmem_cache_alloc(k, flags | __GFP_ZERO); 615 } 616 617 /** 618 * kzalloc - allocate memory. The memory is set to zero. 619 * @size: how many bytes of memory are required. 620 * @flags: the type of memory to allocate (see kmalloc). 621 */ 622 static inline void *kzalloc(size_t size, gfp_t flags) 623 { 624 return kmalloc(size, flags | __GFP_ZERO); 625 } 626 627 /** 628 * kzalloc_node - allocate zeroed memory from a particular memory node. 629 * @size: how many bytes of memory are required. 630 * @flags: the type of memory to allocate (see kmalloc). 631 * @node: memory node from which to allocate 632 */ 633 static inline void *kzalloc_node(size_t size, gfp_t flags, int node) 634 { 635 return kmalloc_node(size, flags | __GFP_ZERO, node); 636 } 637 638 unsigned int kmem_cache_size(struct kmem_cache *s); 639 void __init kmem_cache_init_late(void); 640 641 #endif /* _LINUX_SLAB_H */
1 #ifndef __LINUX_SPINLOCK_H 2 #define __LINUX_SPINLOCK_H 3 4 /* 5 * include/linux/spinlock.h - generic spinlock/rwlock declarations 6 * 7 * here's the role of the various spinlock/rwlock related include files: 8 * 9 * on SMP builds: 10 * 11 * asm/spinlock_types.h: contains the arch_spinlock_t/arch_rwlock_t and the 12 * initializers 13 * 14 * linux/spinlock_types.h: 15 * defines the generic type and initializers 16 * 17 * asm/spinlock.h: contains the arch_spin_*()/etc. lowlevel 18 * implementations, mostly inline assembly code 19 * 20 * (also included on UP-debug builds:) 21 * 22 * linux/spinlock_api_smp.h: 23 * contains the prototypes for the _spin_*() APIs. 24 * 25 * linux/spinlock.h: builds the final spin_*() APIs. 26 * 27 * on UP builds: 28 * 29 * linux/spinlock_type_up.h: 30 * contains the generic, simplified UP spinlock type. 31 * (which is an empty structure on non-debug builds) 32 * 33 * linux/spinlock_types.h: 34 * defines the generic type and initializers 35 * 36 * linux/spinlock_up.h: 37 * contains the arch_spin_*()/etc. version of UP 38 * builds. (which are NOPs on non-debug, non-preempt 39 * builds) 40 * 41 * (included on UP-non-debug builds:) 42 * 43 * linux/spinlock_api_up.h: 44 * builds the _spin_*() APIs. 45 * 46 * linux/spinlock.h: builds the final spin_*() APIs. 47 */ 48 49 #include <linux/typecheck.h> 50 #include <linux/preempt.h> 51 #include <linux/linkage.h> 52 #include <linux/compiler.h> 53 #include <linux/irqflags.h> 54 #include <linux/thread_info.h> 55 #include <linux/kernel.h> 56 #include <linux/stringify.h> 57 #include <linux/bottom_half.h> 58 #include <asm/barrier.h> 59 60 61 /* 62 * Must define these before including other files, inline functions need them 63 */ 64 #define LOCK_SECTION_NAME ".text..lock."KBUILD_BASENAME 65 66 #define LOCK_SECTION_START(extra) \ 67 ".subsection 1\n\t" \ 68 extra \ 69 ".ifndef " LOCK_SECTION_NAME "\n\t" \ 70 LOCK_SECTION_NAME ":\n\t" \ 71 ".endif\n" 72 73 #define LOCK_SECTION_END \ 74 ".previous\n\t" 75 76 #define __lockfunc __attribute__((section(".spinlock.text"))) 77 78 /* 79 * Pull the arch_spinlock_t and arch_rwlock_t definitions: 80 */ 81 #include <linux/spinlock_types.h> 82 83 /* 84 * Pull the arch_spin*() functions/declarations (UP-nondebug doesn't need them): 85 */ 86 #ifdef CONFIG_SMP 87 # include <asm/spinlock.h> 88 #else 89 # include <linux/spinlock_up.h> 90 #endif 91 92 #ifdef CONFIG_DEBUG_SPINLOCK 93 extern void __raw_spin_lock_init(raw_spinlock_t *lock, const char *name, 94 struct lock_class_key *key); 95 # define raw_spin_lock_init(lock) \ 96 do { \ 97 static struct lock_class_key __key; \ 98 \ 99 __raw_spin_lock_init((lock), #lock, &__key); \ 100 } while (0) 101 102 #else 103 # define raw_spin_lock_init(lock) \ 104 do { *(lock) = __RAW_SPIN_LOCK_UNLOCKED(lock); } while (0) 105 #endif 106 107 #define raw_spin_is_locked(lock) arch_spin_is_locked(&(lock)->raw_lock) 108 109 #ifdef CONFIG_GENERIC_LOCKBREAK 110 #define raw_spin_is_contended(lock) ((lock)->break_lock) 111 #else 112 113 #ifdef arch_spin_is_contended 114 #define raw_spin_is_contended(lock) arch_spin_is_contended(&(lock)->raw_lock) 115 #else 116 #define raw_spin_is_contended(lock) (((void)(lock), 0)) 117 #endif /*arch_spin_is_contended*/ 118 #endif 119 120 /* 121 * Despite its name it doesn't necessarily has to be a full barrier. 122 * It should only guarantee that a STORE before the critical section 123 * can not be reordered with LOADs and STOREs inside this section. 124 * spin_lock() is the one-way barrier, this LOAD can not escape out 125 * of the region. So the default implementation simply ensures that 126 * a STORE can not move into the critical section, smp_wmb() should 127 * serialize it with another STORE done by spin_lock(). 128 */ 129 #ifndef smp_mb__before_spinlock 130 #define smp_mb__before_spinlock() smp_wmb() 131 #endif 132 133 /** 134 * raw_spin_unlock_wait - wait until the spinlock gets unlocked 135 * @lock: the spinlock in question. 136 */ 137 #define raw_spin_unlock_wait(lock) arch_spin_unlock_wait(&(lock)->raw_lock) 138 139 #ifdef CONFIG_DEBUG_SPINLOCK 140 extern void do_raw_spin_lock(raw_spinlock_t *lock) __acquires(lock); 141 #define do_raw_spin_lock_flags(lock, flags) do_raw_spin_lock(lock) 142 extern int do_raw_spin_trylock(raw_spinlock_t *lock); 143 extern void do_raw_spin_unlock(raw_spinlock_t *lock) __releases(lock); 144 #else 145 static inline void do_raw_spin_lock(raw_spinlock_t *lock) __acquires(lock) 146 { 147 __acquire(lock); 148 arch_spin_lock(&lock->raw_lock); 149 } 150 151 static inline void 152 do_raw_spin_lock_flags(raw_spinlock_t *lock, unsigned long *flags) __acquires(lock) 153 { 154 __acquire(lock); 155 arch_spin_lock_flags(&lock->raw_lock, *flags); 156 } 157 158 static inline int do_raw_spin_trylock(raw_spinlock_t *lock) 159 { 160 return arch_spin_trylock(&(lock)->raw_lock); 161 } 162 163 static inline void do_raw_spin_unlock(raw_spinlock_t *lock) __releases(lock) 164 { 165 arch_spin_unlock(&lock->raw_lock); 166 __release(lock); 167 } 168 #endif 169 170 /* 171 * Define the various spin_lock methods. Note we define these 172 * regardless of whether CONFIG_SMP or CONFIG_PREEMPT are set. The 173 * various methods are defined as nops in the case they are not 174 * required. 175 */ 176 #define raw_spin_trylock(lock) __cond_lock(lock, _raw_spin_trylock(lock)) 177 178 #define raw_spin_lock(lock) _raw_spin_lock(lock) 179 180 #ifdef CONFIG_DEBUG_LOCK_ALLOC 181 # define raw_spin_lock_nested(lock, subclass) \ 182 _raw_spin_lock_nested(lock, subclass) 183 # define raw_spin_lock_bh_nested(lock, subclass) \ 184 _raw_spin_lock_bh_nested(lock, subclass) 185 186 # define raw_spin_lock_nest_lock(lock, nest_lock) \ 187 do { \ 188 typecheck(struct lockdep_map *, &(nest_lock)->dep_map);\ 189 _raw_spin_lock_nest_lock(lock, &(nest_lock)->dep_map); \ 190 } while (0) 191 #else 192 /* 193 * Always evaluate the 'subclass' argument to avoid that the compiler 194 * warns about set-but-not-used variables when building with 195 * CONFIG_DEBUG_LOCK_ALLOC=n and with W=1. 196 */ 197 # define raw_spin_lock_nested(lock, subclass) \ 198 _raw_spin_lock(((void)(subclass), (lock))) 199 # define raw_spin_lock_nest_lock(lock, nest_lock) _raw_spin_lock(lock) 200 # define raw_spin_lock_bh_nested(lock, subclass) _raw_spin_lock_bh(lock) 201 #endif 202 203 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) 204 205 #define raw_spin_lock_irqsave(lock, flags) \ 206 do { \ 207 typecheck(unsigned long, flags); \ 208 flags = _raw_spin_lock_irqsave(lock); \ 209 } while (0) 210 211 #ifdef CONFIG_DEBUG_LOCK_ALLOC 212 #define raw_spin_lock_irqsave_nested(lock, flags, subclass) \ 213 do { \ 214 typecheck(unsigned long, flags); \ 215 flags = _raw_spin_lock_irqsave_nested(lock, subclass); \ 216 } while (0) 217 #else 218 #define raw_spin_lock_irqsave_nested(lock, flags, subclass) \ 219 do { \ 220 typecheck(unsigned long, flags); \ 221 flags = _raw_spin_lock_irqsave(lock); \ 222 } while (0) 223 #endif 224 225 #else 226 227 #define raw_spin_lock_irqsave(lock, flags) \ 228 do { \ 229 typecheck(unsigned long, flags); \ 230 _raw_spin_lock_irqsave(lock, flags); \ 231 } while (0) 232 233 #define raw_spin_lock_irqsave_nested(lock, flags, subclass) \ 234 raw_spin_lock_irqsave(lock, flags) 235 236 #endif 237 238 #define raw_spin_lock_irq(lock) _raw_spin_lock_irq(lock) 239 #define raw_spin_lock_bh(lock) _raw_spin_lock_bh(lock) 240 #define raw_spin_unlock(lock) _raw_spin_unlock(lock) 241 #define raw_spin_unlock_irq(lock) _raw_spin_unlock_irq(lock) 242 243 #define raw_spin_unlock_irqrestore(lock, flags) \ 244 do { \ 245 typecheck(unsigned long, flags); \ 246 _raw_spin_unlock_irqrestore(lock, flags); \ 247 } while (0) 248 #define raw_spin_unlock_bh(lock) _raw_spin_unlock_bh(lock) 249 250 #define raw_spin_trylock_bh(lock) \ 251 __cond_lock(lock, _raw_spin_trylock_bh(lock)) 252 253 #define raw_spin_trylock_irq(lock) \ 254 ({ \ 255 local_irq_disable(); \ 256 raw_spin_trylock(lock) ? \ 257 1 : ({ local_irq_enable(); 0; }); \ 258 }) 259 260 #define raw_spin_trylock_irqsave(lock, flags) \ 261 ({ \ 262 local_irq_save(flags); \ 263 raw_spin_trylock(lock) ? \ 264 1 : ({ local_irq_restore(flags); 0; }); \ 265 }) 266 267 /** 268 * raw_spin_can_lock - would raw_spin_trylock() succeed? 269 * @lock: the spinlock in question. 270 */ 271 #define raw_spin_can_lock(lock) (!raw_spin_is_locked(lock)) 272 273 /* Include rwlock functions */ 274 #include <linux/rwlock.h> 275 276 /* 277 * Pull the _spin_*()/_read_*()/_write_*() functions/declarations: 278 */ 279 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) 280 # include <linux/spinlock_api_smp.h> 281 #else 282 # include <linux/spinlock_api_up.h> 283 #endif 284 285 /* 286 * Map the spin_lock functions to the raw variants for PREEMPT_RT=n 287 */ 288 289 static __always_inline raw_spinlock_t *spinlock_check(spinlock_t *lock) 290 { 291 return &lock->rlock; 292 } 293 294 #define spin_lock_init(_lock) \ 295 do { \ 296 spinlock_check(_lock); \ 297 raw_spin_lock_init(&(_lock)->rlock); \ 298 } while (0) 299 300 static __always_inline void spin_lock(spinlock_t *lock) 301 { 302 raw_spin_lock(&lock->rlock); 303 } 304 305 static __always_inline void spin_lock_bh(spinlock_t *lock) 306 { 307 raw_spin_lock_bh(&lock->rlock); 308 } 309 310 static __always_inline int spin_trylock(spinlock_t *lock) 311 { 312 return raw_spin_trylock(&lock->rlock); 313 } 314 315 #define spin_lock_nested(lock, subclass) \ 316 do { \ 317 raw_spin_lock_nested(spinlock_check(lock), subclass); \ 318 } while (0) 319 320 #define spin_lock_bh_nested(lock, subclass) \ 321 do { \ 322 raw_spin_lock_bh_nested(spinlock_check(lock), subclass);\ 323 } while (0) 324 325 #define spin_lock_nest_lock(lock, nest_lock) \ 326 do { \ 327 raw_spin_lock_nest_lock(spinlock_check(lock), nest_lock); \ 328 } while (0) 329 330 static __always_inline void spin_lock_irq(spinlock_t *lock) 331 { 332 raw_spin_lock_irq(&lock->rlock); 333 } 334 335 #define spin_lock_irqsave(lock, flags) \ 336 do { \ 337 raw_spin_lock_irqsave(spinlock_check(lock), flags); \ 338 } while (0) 339 340 #define spin_lock_irqsave_nested(lock, flags, subclass) \ 341 do { \ 342 raw_spin_lock_irqsave_nested(spinlock_check(lock), flags, subclass); \ 343 } while (0) 344 345 static __always_inline void spin_unlock(spinlock_t *lock) 346 { 347 raw_spin_unlock(&lock->rlock); 348 } 349 350 static __always_inline void spin_unlock_bh(spinlock_t *lock) 351 { 352 raw_spin_unlock_bh(&lock->rlock); 353 } 354 355 static __always_inline void spin_unlock_irq(spinlock_t *lock) 356 { 357 raw_spin_unlock_irq(&lock->rlock); 358 } 359 360 static __always_inline void spin_unlock_irqrestore(spinlock_t *lock, unsigned long flags) 361 { 362 raw_spin_unlock_irqrestore(&lock->rlock, flags); 363 } 364 365 static __always_inline int spin_trylock_bh(spinlock_t *lock) 366 { 367 return raw_spin_trylock_bh(&lock->rlock); 368 } 369 370 static __always_inline int spin_trylock_irq(spinlock_t *lock) 371 { 372 return raw_spin_trylock_irq(&lock->rlock); 373 } 374 375 #define spin_trylock_irqsave(lock, flags) \ 376 ({ \ 377 raw_spin_trylock_irqsave(spinlock_check(lock), flags); \ 378 }) 379 380 static __always_inline void spin_unlock_wait(spinlock_t *lock) 381 { 382 raw_spin_unlock_wait(&lock->rlock); 383 } 384 385 static __always_inline int spin_is_locked(spinlock_t *lock) 386 { 387 return raw_spin_is_locked(&lock->rlock); 388 } 389 390 static __always_inline int spin_is_contended(spinlock_t *lock) 391 { 392 return raw_spin_is_contended(&lock->rlock); 393 } 394 395 static __always_inline int spin_can_lock(spinlock_t *lock) 396 { 397 return raw_spin_can_lock(&lock->rlock); 398 } 399 400 #define assert_spin_locked(lock) assert_raw_spin_locked(&(lock)->rlock) 401 402 /* 403 * Pull the atomic_t declaration: 404 * (asm-mips/atomic.h needs above definitions) 405 */ 406 #include <linux/atomic.h> 407 /** 408 * atomic_dec_and_lock - lock on reaching reference count zero 409 * @atomic: the atomic counter 410 * @lock: the spinlock in question 411 * 412 * Decrements @atomic by 1. If the result is 0, returns true and locks 413 * @lock. Returns false for all other cases. 414 */ 415 extern int _atomic_dec_and_lock(atomic_t *atomic, spinlock_t *lock); 416 #define atomic_dec_and_lock(atomic, lock) \ 417 __cond_lock(lock, _atomic_dec_and_lock(atomic, lock)) 418 419 #endif /* __LINUX_SPINLOCK_H */

Here is an explanation of a rule violation arisen while checking your driver against a corresponding kernel.

Note that it may be false positive, i.e. there isn't a real error indeed. Please analyze a given error trace and related source code to understand whether there is an error in your driver.

Error trace column contains a path on which the given rule is violated. You can expand/collapse some entity classes by clicking on corresponding checkboxes in a main menu or in an advanced Others menu. Also you can expand/collapse each particular entity by clicking on +/-. In hovering on some entities you can see some tips. Also the error trace is bound with related source code. Line numbers may be shown as links on the left. You can click on them to open corresponding lines in source code.

Source code column contains a content of files related with the error trace. There is source code of your driver (note that there are some LDV modifications at the end), kernel headers and rule model. Tabs show a currently opened file and other available files. In hovering on them you can see full file names. On clicking a corresponding file content will be shown.

Ядро Модуль Правило Верификатор Вердикт Статус Время создания Описание проблемы
linux-4.8-rc1.tar.xz drivers/firewire/nosy.ko 152_1a CPAchecker Bug Fixed 2016-09-24 18:04:53 L0251

Комментарий

Reported: 25 Sep 2016

[В начало]