 Bug
 Bug
        
                          [В начало]
Ошибка # 160
Показать/спрятать трассу ошибок|       Error trace     
         {    20     typedef unsigned char __u8;    23     typedef unsigned short __u16;    25     typedef int __s32;    26     typedef unsigned int __u32;    29     typedef long long __s64;    30     typedef unsigned long long __u64;    15     typedef signed char s8;    16     typedef unsigned char u8;    18     typedef short s16;    19     typedef unsigned short u16;    21     typedef int s32;    22     typedef unsigned int u32;    24     typedef long long s64;    25     typedef unsigned long long u64;    14     typedef long __kernel_long_t;    15     typedef unsigned long __kernel_ulong_t;    27     typedef int __kernel_pid_t;    48     typedef unsigned int __kernel_uid32_t;    49     typedef unsigned int __kernel_gid32_t;    71     typedef __kernel_ulong_t __kernel_size_t;    72     typedef __kernel_long_t __kernel_ssize_t;    87     typedef long long __kernel_loff_t;    88     typedef __kernel_long_t __kernel_time_t;    89     typedef __kernel_long_t __kernel_clock_t;    90     typedef int __kernel_timer_t;    91     typedef int __kernel_clockid_t;   280     struct kernel_symbol {   unsigned long value;   const char *name; } ;    34     struct module ;    12     typedef __u32 __kernel_dev_t;    15     typedef __kernel_dev_t dev_t;    18     typedef unsigned short umode_t;    21     typedef __kernel_pid_t pid_t;    26     typedef __kernel_clockid_t clockid_t;    29     typedef _Bool bool;    31     typedef __kernel_uid32_t uid_t;    32     typedef __kernel_gid32_t gid_t;    45     typedef __kernel_loff_t loff_t;    54     typedef __kernel_size_t size_t;    59     typedef __kernel_ssize_t ssize_t;    69     typedef __kernel_time_t time_t;   102     typedef __s32 int32_t;   108     typedef __u32 uint32_t;   133     typedef unsigned long sector_t;   134     typedef unsigned long blkcnt_t;   152     typedef u64 dma_addr_t;   157     typedef unsigned int gfp_t;   158     typedef unsigned int fmode_t;   161     typedef u64 phys_addr_t;   166     typedef phys_addr_t resource_size_t;   176     struct __anonstruct_atomic_t_6 {   int counter; } ;   176     typedef struct __anonstruct_atomic_t_6 atomic_t;   181     struct __anonstruct_atomic64_t_7 {   long counter; } ;   181     typedef struct __anonstruct_atomic64_t_7 atomic64_t;   182     struct list_head {   struct list_head *next;   struct list_head *prev; } ;   187     struct hlist_node ;   187     struct hlist_head {   struct hlist_node *first; } ;   191     struct hlist_node {   struct hlist_node *next;   struct hlist_node **pprev; } ;   202     struct callback_head {   struct callback_head *next;   void (*func)(struct callback_head *); } ;   115     typedef void (*ctor_fn_t)();    58     struct device ;   450     struct file_operations ;   462     struct completion ;   463     struct pt_regs ;   557     struct bug_entry {   int bug_addr_disp;   int file_disp;   unsigned short line;   unsigned short flags; } ;   114     struct timespec ;   115     struct compat_timespec ;   116     struct thread_info {   unsigned long flags; } ;    20     struct __anonstruct_futex_25 {   u32 *uaddr;   u32 val;   u32 flags;   u32 bitset;   u64 time;   u32 *uaddr2; } ;    20     struct __anonstruct_nanosleep_26 {   clockid_t clockid;   struct timespec *rmtp;   struct compat_timespec *compat_rmtp;   u64 expires; } ;    20     struct pollfd ;    20     struct __anonstruct_poll_27 {   struct pollfd *ufds;   int nfds;   int has_timeout;   unsigned long tv_sec;   unsigned long tv_nsec; } ;    20     union __anonunion____missing_field_name_24 {   struct __anonstruct_futex_25 futex;   struct __anonstruct_nanosleep_26 nanosleep;   struct __anonstruct_poll_27 poll; } ;    20     struct restart_block {   long int (*fn)(struct restart_block *);   union __anonunion____missing_field_name_24 __annonCompField4; } ;    39     struct page ;    26     struct task_struct ;    27     struct mm_struct ;   288     struct pt_regs {   unsigned long r15;   unsigned long r14;   unsigned long r13;   unsigned long r12;   unsigned long bp;   unsigned long bx;   unsigned long r11;   unsigned long r10;   unsigned long r9;   unsigned long r8;   unsigned long ax;   unsigned long cx;   unsigned long dx;   unsigned long si;   unsigned long di;   unsigned long orig_ax;   unsigned long ip;   unsigned long cs;   unsigned long flags;   unsigned long sp;   unsigned long ss; } ;    66     struct __anonstruct____missing_field_name_30 {   unsigned int a;   unsigned int b; } ;    66     struct __anonstruct____missing_field_name_31 {   u16 limit0;   u16 base0;   unsigned char base1;   unsigned char type;   unsigned char s;   unsigned char dpl;   unsigned char p;   unsigned char limit;   unsigned char avl;   unsigned char l;   unsigned char d;   unsigned char g;   unsigned char base2; } ;    66     union __anonunion____missing_field_name_29 {   struct __anonstruct____missing_field_name_30 __annonCompField5;   struct __anonstruct____missing_field_name_31 __annonCompField6; } ;    66     struct desc_struct {   union __anonunion____missing_field_name_29 __annonCompField7; } ;    13     typedef unsigned long pteval_t;    14     typedef unsigned long pmdval_t;    16     typedef unsigned long pgdval_t;    17     typedef unsigned long pgprotval_t;    19     struct __anonstruct_pte_t_32 {   pteval_t pte; } ;    19     typedef struct __anonstruct_pte_t_32 pte_t;    21     struct pgprot {   pgprotval_t pgprot; } ;   256     typedef struct pgprot pgprot_t;   258     struct __anonstruct_pgd_t_33 {   pgdval_t pgd; } ;   258     typedef struct __anonstruct_pgd_t_33 pgd_t;   297     struct __anonstruct_pmd_t_35 {   pmdval_t pmd; } ;   297     typedef struct __anonstruct_pmd_t_35 pmd_t;   423     typedef struct page *pgtable_t;   434     struct file ;   445     struct seq_file ;   481     struct thread_struct ;   483     struct cpumask ;    20     struct qspinlock {   atomic_t val; } ;    33     typedef struct qspinlock arch_spinlock_t;    34     struct qrwlock {   atomic_t cnts;   arch_spinlock_t wait_lock; } ;    14     typedef struct qrwlock arch_rwlock_t;   247     struct math_emu_info {   long ___orig_eip;   struct pt_regs *regs; } ;    83     struct static_key {   atomic_t enabled; } ;    23     typedef atomic64_t atomic_long_t;   359     struct cpumask {   unsigned long bits[128U]; } ;    15     typedef struct cpumask cpumask_t;   654     typedef struct cpumask *cpumask_var_t;    22     struct tracepoint_func {   void *func;   void *data;   int prio; } ;    28     struct tracepoint {   const char *name;   struct static_key key;   void (*regfunc)();   void (*unregfunc)();   struct tracepoint_func *funcs; } ;   246     struct fregs_state {   u32 cwd;   u32 swd;   u32 twd;   u32 fip;   u32 fcs;   u32 foo;   u32 fos;   u32 st_space[20U];   u32 status; } ;    26     struct __anonstruct____missing_field_name_59 {   u64 rip;   u64 rdp; } ;    26     struct __anonstruct____missing_field_name_60 {   u32 fip;   u32 fcs;   u32 foo;   u32 fos; } ;    26     union __anonunion____missing_field_name_58 {   struct __anonstruct____missing_field_name_59 __annonCompField13;   struct __anonstruct____missing_field_name_60 __annonCompField14; } ;    26     union __anonunion____missing_field_name_61 {   u32 padding1[12U];   u32 sw_reserved[12U]; } ;    26     struct fxregs_state {   u16 cwd;   u16 swd;   u16 twd;   u16 fop;   union __anonunion____missing_field_name_58 __annonCompField15;   u32 mxcsr;   u32 mxcsr_mask;   u32 st_space[32U];   u32 xmm_space[64U];   u32 padding[12U];   union __anonunion____missing_field_name_61 __annonCompField16; } ;    66     struct swregs_state {   u32 cwd;   u32 swd;   u32 twd;   u32 fip;   u32 fcs;   u32 foo;   u32 fos;   u32 st_space[20U];   u8 ftop;   u8 changed;   u8 lookahead;   u8 no_update;   u8 rm;   u8 alimit;   struct math_emu_info *info;   u32 entry_eip; } ;   227     struct xstate_header {   u64 xfeatures;   u64 xcomp_bv;   u64 reserved[6U]; } ;   233     struct xregs_state {   struct fxregs_state i387;   struct xstate_header header;   u8 extended_state_area[0U]; } ;   254     union fpregs_state {   struct fregs_state fsave;   struct fxregs_state fxsave;   struct swregs_state soft;   struct xregs_state xsave;   u8 __padding[4096U]; } ;   271     struct fpu {   unsigned int last_cpu;   unsigned char fpstate_active;   unsigned char fpregs_active;   unsigned char counter;   union fpregs_state state; } ;   169     struct seq_operations ;   372     struct perf_event ;   377     struct __anonstruct_mm_segment_t_73 {   unsigned long seg; } ;   377     typedef struct __anonstruct_mm_segment_t_73 mm_segment_t;   378     struct thread_struct {   struct desc_struct tls_array[3U];   unsigned long sp0;   unsigned long sp;   unsigned short es;   unsigned short ds;   unsigned short fsindex;   unsigned short gsindex;   u32 status;   unsigned long fsbase;   unsigned long gsbase;   struct perf_event *ptrace_bps[4U];   unsigned long debugreg6;   unsigned long ptrace_dr7;   unsigned long cr2;   unsigned long trap_nr;   unsigned long error_code;   unsigned long *io_bitmap_ptr;   unsigned long iopl;   unsigned int io_bitmap_max;   mm_segment_t addr_limit;   unsigned char sig_on_uaccess_err;   unsigned char uaccess_err;   struct fpu fpu; } ;    33     struct lockdep_map ;    55     struct stack_trace {   unsigned int nr_entries;   unsigned int max_entries;   unsigned long *entries;   int skip; } ;    28     struct lockdep_subclass_key {   char __one_byte; } ;    53     struct lock_class_key {   struct lockdep_subclass_key subkeys[8U]; } ;    59     struct lock_class {   struct hlist_node hash_entry;   struct list_head lock_entry;   struct lockdep_subclass_key *key;   unsigned int subclass;   unsigned int dep_gen_id;   unsigned long usage_mask;   struct stack_trace usage_traces[13U];   struct list_head locks_after;   struct list_head locks_before;   unsigned int version;   unsigned long ops;   const char *name;   int name_version;   unsigned long contention_point[4U];   unsigned long contending_point[4U]; } ;   144     struct lockdep_map {   struct lock_class_key *key;   struct lock_class *class_cache[2U];   const char *name;   int cpu;   unsigned long ip; } ;   207     struct held_lock {   u64 prev_chain_key;   unsigned long acquire_ip;   struct lockdep_map *instance;   struct lockdep_map *nest_lock;   u64 waittime_stamp;   u64 holdtime_stamp;   unsigned short class_idx;   unsigned char irq_context;   unsigned char trylock;   unsigned char read;   unsigned char check;   unsigned char hardirqs_off;   unsigned short references;   unsigned int pin_count; } ;   572     struct raw_spinlock {   arch_spinlock_t raw_lock;   unsigned int magic;   unsigned int owner_cpu;   void *owner;   struct lockdep_map dep_map; } ;    32     typedef struct raw_spinlock raw_spinlock_t;    33     struct __anonstruct____missing_field_name_75 {   u8 __padding[24U];   struct lockdep_map dep_map; } ;    33     union __anonunion____missing_field_name_74 {   struct raw_spinlock rlock;   struct __anonstruct____missing_field_name_75 __annonCompField19; } ;    33     struct spinlock {   union __anonunion____missing_field_name_74 __annonCompField20; } ;    76     typedef struct spinlock spinlock_t;    23     struct __anonstruct_rwlock_t_76 {   arch_rwlock_t raw_lock;   unsigned int magic;   unsigned int owner_cpu;   void *owner;   struct lockdep_map dep_map; } ;    23     typedef struct __anonstruct_rwlock_t_76 rwlock_t;   416     struct seqcount {   unsigned int sequence;   struct lockdep_map dep_map; } ;    52     typedef struct seqcount seqcount_t;   407     struct __anonstruct_seqlock_t_91 {   struct seqcount seqcount;   spinlock_t lock; } ;   407     typedef struct __anonstruct_seqlock_t_91 seqlock_t;   601     struct timespec {   __kernel_time_t tv_sec;   long tv_nsec; } ;     7     typedef __s64 time64_t;    83     struct user_namespace ;    22     struct __anonstruct_kuid_t_92 {   uid_t val; } ;    22     typedef struct __anonstruct_kuid_t_92 kuid_t;    27     struct __anonstruct_kgid_t_93 {   gid_t val; } ;    27     typedef struct __anonstruct_kgid_t_93 kgid_t;   139     struct kstat {   u64 ino;   dev_t dev;   umode_t mode;   unsigned int nlink;   kuid_t uid;   kgid_t gid;   dev_t rdev;   loff_t size;   struct timespec atime;   struct timespec mtime;   struct timespec ctime;   unsigned long blksize;   unsigned long long blocks; } ;    36     struct vm_area_struct ;    38     struct __wait_queue_head {   spinlock_t lock;   struct list_head task_list; } ;    43     typedef struct __wait_queue_head wait_queue_head_t;    97     struct __anonstruct_nodemask_t_94 {   unsigned long bits[16U]; } ;    97     typedef struct __anonstruct_nodemask_t_94 nodemask_t;   249     typedef unsigned int isolate_mode_t;    13     struct optimistic_spin_queue {   atomic_t tail; } ;    39     struct mutex {   atomic_t count;   spinlock_t wait_lock;   struct list_head wait_list;   struct task_struct *owner;   void *magic;   struct lockdep_map dep_map; } ;    67     struct mutex_waiter {   struct list_head list;   struct task_struct *task;   void *magic; } ;   177     struct rw_semaphore ;   178     struct rw_semaphore {   atomic_long_t count;   struct list_head wait_list;   raw_spinlock_t wait_lock;   struct optimistic_spin_queue osq;   struct task_struct *owner;   struct lockdep_map dep_map; } ;   178     struct completion {   unsigned int done;   wait_queue_head_t wait; } ;   450     union ktime {   s64 tv64; } ;    41     typedef union ktime ktime_t;  1145     struct timer_list {   struct hlist_node entry;   unsigned long expires;   void (*function)(unsigned long);   unsigned long data;   u32 flags;   int start_pid;   void *start_site;   char start_comm[16U];   struct lockdep_map lockdep_map; } ;   254     struct hrtimer ;   255     enum hrtimer_restart ;   256     struct rb_node {   unsigned long __rb_parent_color;   struct rb_node *rb_right;   struct rb_node *rb_left; } ;    41     struct rb_root {   struct rb_node *rb_node; } ;   835     struct nsproxy ;   278     struct workqueue_struct ;   279     struct work_struct ;    54     struct work_struct {   atomic_long_t data;   struct list_head entry;   void (*func)(struct work_struct *);   struct lockdep_map lockdep_map; } ;   107     struct delayed_work {   struct work_struct work;   struct timer_list timer;   struct workqueue_struct *wq;   int cpu; } ;   217     struct resource ;    66     struct resource {   resource_size_t start;   resource_size_t end;   const char *name;   unsigned long flags;   unsigned long desc;   struct resource *parent;   struct resource *sibling;   struct resource *child; } ;    58     struct pm_message {   int event; } ;    64     typedef struct pm_message pm_message_t;    65     struct dev_pm_ops {   int (*prepare)(struct device *);   void (*complete)(struct device *);   int (*suspend)(struct device *);   int (*resume)(struct device *);   int (*freeze)(struct device *);   int (*thaw)(struct device *);   int (*poweroff)(struct device *);   int (*restore)(struct device *);   int (*suspend_late)(struct device *);   int (*resume_early)(struct device *);   int (*freeze_late)(struct device *);   int (*thaw_early)(struct device *);   int (*poweroff_late)(struct device *);   int (*restore_early)(struct device *);   int (*suspend_noirq)(struct device *);   int (*resume_noirq)(struct device *);   int (*freeze_noirq)(struct device *);   int (*thaw_noirq)(struct device *);   int (*poweroff_noirq)(struct device *);   int (*restore_noirq)(struct device *);   int (*runtime_suspend)(struct device *);   int (*runtime_resume)(struct device *);   int (*runtime_idle)(struct device *); } ;   320     enum rpm_status {   RPM_ACTIVE = 0,   RPM_RESUMING = 1,   RPM_SUSPENDED = 2,   RPM_SUSPENDING = 3 } ;   327     enum rpm_request {   RPM_REQ_NONE = 0,   RPM_REQ_IDLE = 1,   RPM_REQ_SUSPEND = 2,   RPM_REQ_AUTOSUSPEND = 3,   RPM_REQ_RESUME = 4 } ;   335     struct wakeup_source ;   336     struct wake_irq ;   337     struct pm_domain_data ;   338     struct pm_subsys_data {   spinlock_t lock;   unsigned int refcount;   struct list_head clock_list;   struct pm_domain_data *domain_data; } ;   556     struct dev_pm_qos ;   556     struct dev_pm_info {   pm_message_t power_state;   unsigned char can_wakeup;   unsigned char async_suspend;   bool is_prepared;   bool is_suspended;   bool is_noirq_suspended;   bool is_late_suspended;   bool early_init;   bool direct_complete;   spinlock_t lock;   struct list_head entry;   struct completion completion;   struct wakeup_source *wakeup;   bool wakeup_path;   bool syscore;   bool no_pm_callbacks;   struct timer_list suspend_timer;   unsigned long timer_expires;   struct work_struct work;   wait_queue_head_t wait_queue;   struct wake_irq *wakeirq;   atomic_t usage_count;   atomic_t child_count;   unsigned char disable_depth;   unsigned char idle_notification;   unsigned char request_pending;   unsigned char deferred_resume;   unsigned char run_wake;   unsigned char runtime_auto;   bool ignore_children;   unsigned char no_callbacks;   unsigned char irq_safe;   unsigned char use_autosuspend;   unsigned char timer_autosuspends;   unsigned char memalloc_noio;   enum rpm_request request;   enum rpm_status runtime_status;   int runtime_error;   int autosuspend_delay;   unsigned long last_busy;   unsigned long active_jiffies;   unsigned long suspended_jiffies;   unsigned long accounting_timestamp;   struct pm_subsys_data *subsys_data;   void (*set_latency_tolerance)(struct device *, s32 );   struct dev_pm_qos *qos; } ;   616     struct dev_pm_domain {   struct dev_pm_ops ops;   void (*detach)(struct device *, bool );   int (*activate)(struct device *);   void (*sync)(struct device *);   void (*dismiss)(struct device *); } ;    34     struct ldt_struct ;    34     struct vdso_image ;    34     struct __anonstruct_mm_context_t_165 {   struct ldt_struct *ldt;   unsigned short ia32_compat;   struct mutex lock;   void *vdso;   const struct vdso_image *vdso_image;   atomic_t perf_rdpmc_allowed;   u16 pkey_allocation_map;   s16 execute_only_pkey; } ;    34     typedef struct __anonstruct_mm_context_t_165 mm_context_t;  1290     struct llist_node ;    64     struct llist_node {   struct llist_node *next; } ;    37     struct cred ;    19     struct inode ;    58     struct arch_uprobe_task {   unsigned long saved_scratch_register;   unsigned int saved_trap_nr;   unsigned int saved_tf; } ;    66     enum uprobe_task_state {   UTASK_RUNNING = 0,   UTASK_SSTEP = 1,   UTASK_SSTEP_ACK = 2,   UTASK_SSTEP_TRAPPED = 3 } ;    73     struct __anonstruct____missing_field_name_211 {   struct arch_uprobe_task autask;   unsigned long vaddr; } ;    73     struct __anonstruct____missing_field_name_212 {   struct callback_head dup_xol_work;   unsigned long dup_xol_addr; } ;    73     union __anonunion____missing_field_name_210 {   struct __anonstruct____missing_field_name_211 __annonCompField35;   struct __anonstruct____missing_field_name_212 __annonCompField36; } ;    73     struct uprobe ;    73     struct return_instance ;    73     struct uprobe_task {   enum uprobe_task_state state;   union __anonunion____missing_field_name_210 __annonCompField37;   struct uprobe *active_uprobe;   unsigned long xol_vaddr;   struct return_instance *return_instances;   unsigned int depth; } ;    94     struct return_instance {   struct uprobe *uprobe;   unsigned long func;   unsigned long stack;   unsigned long orig_ret_vaddr;   bool chained;   struct return_instance *next; } ;   110     struct xol_area ;   111     struct uprobes_state {   struct xol_area *xol_area; } ;   150     struct address_space ;   151     struct mem_cgroup ;   152     union __anonunion____missing_field_name_213 {   struct address_space *mapping;   void *s_mem;   atomic_t compound_mapcount; } ;   152     union __anonunion____missing_field_name_214 {   unsigned long index;   void *freelist; } ;   152     struct __anonstruct____missing_field_name_218 {   unsigned short inuse;   unsigned short objects;   unsigned char frozen; } ;   152     union __anonunion____missing_field_name_217 {   atomic_t _mapcount;   unsigned int active;   struct __anonstruct____missing_field_name_218 __annonCompField40;   int units; } ;   152     struct __anonstruct____missing_field_name_216 {   union __anonunion____missing_field_name_217 __annonCompField41;   atomic_t _refcount; } ;   152     union __anonunion____missing_field_name_215 {   unsigned long counters;   struct __anonstruct____missing_field_name_216 __annonCompField42; } ;   152     struct dev_pagemap ;   152     struct __anonstruct____missing_field_name_220 {   struct page *next;   int pages;   int pobjects; } ;   152     struct __anonstruct____missing_field_name_221 {   unsigned long compound_head;   unsigned int compound_dtor;   unsigned int compound_order; } ;   152     struct __anonstruct____missing_field_name_222 {   unsigned long __pad;   pgtable_t pmd_huge_pte; } ;   152     union __anonunion____missing_field_name_219 {   struct list_head lru;   struct dev_pagemap *pgmap;   struct __anonstruct____missing_field_name_220 __annonCompField44;   struct callback_head callback_head;   struct __anonstruct____missing_field_name_221 __annonCompField45;   struct __anonstruct____missing_field_name_222 __annonCompField46; } ;   152     struct kmem_cache ;   152     union __anonunion____missing_field_name_223 {   unsigned long private;   spinlock_t *ptl;   struct kmem_cache *slab_cache; } ;   152     struct page {   unsigned long flags;   union __anonunion____missing_field_name_213 __annonCompField38;   union __anonunion____missing_field_name_214 __annonCompField39;   union __anonunion____missing_field_name_215 __annonCompField43;   union __anonunion____missing_field_name_219 __annonCompField47;   union __anonunion____missing_field_name_223 __annonCompField48;   struct mem_cgroup *mem_cgroup; } ;   197     struct page_frag {   struct page *page;   __u32 offset;   __u32 size; } ;   282     struct userfaultfd_ctx ;   282     struct vm_userfaultfd_ctx {   struct userfaultfd_ctx *ctx; } ;   289     struct __anonstruct_shared_224 {   struct rb_node rb;   unsigned long rb_subtree_last; } ;   289     struct anon_vma ;   289     struct vm_operations_struct ;   289     struct mempolicy ;   289     struct vm_area_struct {   unsigned long vm_start;   unsigned long vm_end;   struct vm_area_struct *vm_next;   struct vm_area_struct *vm_prev;   struct rb_node vm_rb;   unsigned long rb_subtree_gap;   struct mm_struct *vm_mm;   pgprot_t vm_page_prot;   unsigned long vm_flags;   struct __anonstruct_shared_224 shared;   struct list_head anon_vma_chain;   struct anon_vma *anon_vma;   const struct vm_operations_struct *vm_ops;   unsigned long vm_pgoff;   struct file *vm_file;   void *vm_private_data;   struct mempolicy *vm_policy;   struct vm_userfaultfd_ctx vm_userfaultfd_ctx; } ;   362     struct core_thread {   struct task_struct *task;   struct core_thread *next; } ;   367     struct core_state {   atomic_t nr_threads;   struct core_thread dumper;   struct completion startup; } ;   381     struct task_rss_stat {   int events;   int count[4U]; } ;   389     struct mm_rss_stat {   atomic_long_t count[4U]; } ;   394     struct kioctx_table ;   395     struct linux_binfmt ;   395     struct mmu_notifier_mm ;   395     struct mm_struct {   struct vm_area_struct *mmap;   struct rb_root mm_rb;   u32 vmacache_seqnum;   unsigned long int (*get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);   unsigned long mmap_base;   unsigned long mmap_legacy_base;   unsigned long task_size;   unsigned long highest_vm_end;   pgd_t *pgd;   atomic_t mm_users;   atomic_t mm_count;   atomic_long_t nr_ptes;   atomic_long_t nr_pmds;   int map_count;   spinlock_t page_table_lock;   struct rw_semaphore mmap_sem;   struct list_head mmlist;   unsigned long hiwater_rss;   unsigned long hiwater_vm;   unsigned long total_vm;   unsigned long locked_vm;   unsigned long pinned_vm;   unsigned long data_vm;   unsigned long exec_vm;   unsigned long stack_vm;   unsigned long def_flags;   unsigned long start_code;   unsigned long end_code;   unsigned long start_data;   unsigned long end_data;   unsigned long start_brk;   unsigned long brk;   unsigned long start_stack;   unsigned long arg_start;   unsigned long arg_end;   unsigned long env_start;   unsigned long env_end;   unsigned long saved_auxv[46U];   struct mm_rss_stat rss_stat;   struct linux_binfmt *binfmt;   cpumask_var_t cpu_vm_mask_var;   mm_context_t context;   unsigned long flags;   struct core_state *core_state;   spinlock_t ioctx_lock;   struct kioctx_table *ioctx_table;   struct task_struct *owner;   struct file *exe_file;   struct mmu_notifier_mm *mmu_notifier_mm;   struct cpumask cpumask_allocation;   unsigned long numa_next_scan;   unsigned long numa_scan_offset;   int numa_scan_seq;   bool tlb_flush_pending;   struct uprobes_state uprobes_state;   void *bd_addr;   atomic_long_t hugetlb_usage;   struct work_struct async_put_work; } ;   563     struct vm_fault ;   617     struct vdso_image {   void *data;   unsigned long size;   unsigned long alt;   unsigned long alt_len;   long sym_vvar_start;   long sym_vvar_page;   long sym_hpet_page;   long sym_pvclock_page;   long sym_VDSO32_NOTE_MASK;   long sym___kernel_sigreturn;   long sym___kernel_rt_sigreturn;   long sym___kernel_vsyscall;   long sym_int80_landing_pad; } ;    15     typedef __u64 Elf64_Addr;    16     typedef __u16 Elf64_Half;    18     typedef __u64 Elf64_Off;    20     typedef __u32 Elf64_Word;    21     typedef __u64 Elf64_Xword;   190     struct elf64_sym {   Elf64_Word st_name;   unsigned char st_info;   unsigned char st_other;   Elf64_Half st_shndx;   Elf64_Addr st_value;   Elf64_Xword st_size; } ;   198     typedef struct elf64_sym Elf64_Sym;   219     struct elf64_hdr {   unsigned char e_ident[16U];   Elf64_Half e_type;   Elf64_Half e_machine;   Elf64_Word e_version;   Elf64_Addr e_entry;   Elf64_Off e_phoff;   Elf64_Off e_shoff;   Elf64_Word e_flags;   Elf64_Half e_ehsize;   Elf64_Half e_phentsize;   Elf64_Half e_phnum;   Elf64_Half e_shentsize;   Elf64_Half e_shnum;   Elf64_Half e_shstrndx; } ;   235     typedef struct elf64_hdr Elf64_Ehdr;   314     struct elf64_shdr {   Elf64_Word sh_name;   Elf64_Word sh_type;   Elf64_Xword sh_flags;   Elf64_Addr sh_addr;   Elf64_Off sh_offset;   Elf64_Xword sh_size;   Elf64_Word sh_link;   Elf64_Word sh_info;   Elf64_Xword sh_addralign;   Elf64_Xword sh_entsize; } ;   326     typedef struct elf64_shdr Elf64_Shdr;    53     union __anonunion____missing_field_name_229 {   unsigned long bitmap[4U];   struct callback_head callback_head; } ;    53     struct idr_layer {   int prefix;   int layer;   struct idr_layer *ary[256U];   int count;   union __anonunion____missing_field_name_229 __annonCompField49; } ;    41     struct idr {   struct idr_layer *hint;   struct idr_layer *top;   int layers;   int cur;   spinlock_t lock;   int id_free_cnt;   struct idr_layer *id_free; } ;   124     struct ida_bitmap {   long nr_busy;   unsigned long bitmap[15U]; } ;   167     struct ida {   struct idr idr;   struct ida_bitmap *free_bitmap; } ;   199     struct dentry ;   200     struct iattr ;   201     struct super_block ;   202     struct file_system_type ;   203     struct kernfs_open_node ;   204     struct kernfs_iattrs ;   227     struct kernfs_root ;   227     struct kernfs_elem_dir {   unsigned long subdirs;   struct rb_root children;   struct kernfs_root *root; } ;    85     struct kernfs_node ;    85     struct kernfs_elem_symlink {   struct kernfs_node *target_kn; } ;    89     struct kernfs_ops ;    89     struct kernfs_elem_attr {   const struct kernfs_ops *ops;   struct kernfs_open_node *open;   loff_t size;   struct kernfs_node *notify_next; } ;    96     union __anonunion____missing_field_name_234 {   struct kernfs_elem_dir dir;   struct kernfs_elem_symlink symlink;   struct kernfs_elem_attr attr; } ;    96     struct kernfs_node {   atomic_t count;   atomic_t active;   struct lockdep_map dep_map;   struct kernfs_node *parent;   const char *name;   struct rb_node rb;   const void *ns;   unsigned int hash;   union __anonunion____missing_field_name_234 __annonCompField50;   void *priv;   unsigned short flags;   umode_t mode;   unsigned int ino;   struct kernfs_iattrs *iattr; } ;   138     struct kernfs_syscall_ops {   int (*remount_fs)(struct kernfs_root *, int *, char *);   int (*show_options)(struct seq_file *, struct kernfs_root *);   int (*mkdir)(struct kernfs_node *, const char *, umode_t );   int (*rmdir)(struct kernfs_node *);   int (*rename)(struct kernfs_node *, struct kernfs_node *, const char *);   int (*show_path)(struct seq_file *, struct kernfs_node *, struct kernfs_root *); } ;   157     struct kernfs_root {   struct kernfs_node *kn;   unsigned int flags;   struct ida ino_ida;   struct kernfs_syscall_ops *syscall_ops;   struct list_head supers;   wait_queue_head_t deactivate_waitq; } ;   173     struct kernfs_open_file {   struct kernfs_node *kn;   struct file *file;   void *priv;   struct mutex mutex;   struct mutex prealloc_mutex;   int event;   struct list_head list;   char *prealloc_buf;   size_t atomic_write_len;   bool mmapped;   const struct vm_operations_struct *vm_ops; } ;   191     struct kernfs_ops {   int (*seq_show)(struct seq_file *, void *);   void * (*seq_start)(struct seq_file *, loff_t *);   void * (*seq_next)(struct seq_file *, void *, loff_t *);   void (*seq_stop)(struct seq_file *, void *);   ssize_t  (*read)(struct kernfs_open_file *, char *, size_t , loff_t );   size_t atomic_write_len;   bool prealloc;   ssize_t  (*write)(struct kernfs_open_file *, char *, size_t , loff_t );   int (*mmap)(struct kernfs_open_file *, struct vm_area_struct *);   struct lock_class_key lockdep_key; } ;   511     struct sock ;   512     struct kobject ;   513     enum kobj_ns_type {   KOBJ_NS_TYPE_NONE = 0,   KOBJ_NS_TYPE_NET = 1,   KOBJ_NS_TYPES = 2 } ;   519     struct kobj_ns_type_operations {   enum kobj_ns_type type;   bool  (*current_may_mount)();   void * (*grab_current_ns)();   const void * (*netlink_ns)(struct sock *);   const void * (*initial_ns)();   void (*drop_ns)(void *); } ;    59     struct bin_attribute ;    60     struct attribute {   const char *name;   umode_t mode;   bool ignore_lockdep;   struct lock_class_key *key;   struct lock_class_key skey; } ;    37     struct attribute_group {   const char *name;   umode_t  (*is_visible)(struct kobject *, struct attribute *, int);   umode_t  (*is_bin_visible)(struct kobject *, struct bin_attribute *, int);   struct attribute **attrs;   struct bin_attribute **bin_attrs; } ;    92     struct bin_attribute {   struct attribute attr;   size_t size;   void *private;   ssize_t  (*read)(struct file *, struct kobject *, struct bin_attribute *, char *, loff_t , size_t );   ssize_t  (*write)(struct file *, struct kobject *, struct bin_attribute *, char *, loff_t , size_t );   int (*mmap)(struct file *, struct kobject *, struct bin_attribute *, struct vm_area_struct *); } ;   165     struct sysfs_ops {   ssize_t  (*show)(struct kobject *, struct attribute *, char *);   ssize_t  (*store)(struct kobject *, struct attribute *, const char *, size_t ); } ;   530     struct kref {   atomic_t refcount; } ;    52     struct kset ;    52     struct kobj_type ;    52     struct kobject {   const char *name;   struct list_head entry;   struct kobject *parent;   struct kset *kset;   struct kobj_type *ktype;   struct kernfs_node *sd;   struct kref kref;   struct delayed_work release;   unsigned char state_initialized;   unsigned char state_in_sysfs;   unsigned char state_add_uevent_sent;   unsigned char state_remove_uevent_sent;   unsigned char uevent_suppress; } ;   115     struct kobj_type {   void (*release)(struct kobject *);   const struct sysfs_ops *sysfs_ops;   struct attribute **default_attrs;   const struct kobj_ns_type_operations * (*child_ns_type)(struct kobject *);   const void * (*namespace)(struct kobject *); } ;   123     struct kobj_uevent_env {   char *argv[3U];   char *envp[32U];   int envp_idx;   char buf[2048U];   int buflen; } ;   131     struct kset_uevent_ops {   const int (*filter)(struct kset *, struct kobject *);   const const char * (*name)(struct kset *, struct kobject *);   const int (*uevent)(struct kset *, struct kobject *, struct kobj_uevent_env *); } ;   148     struct kset {   struct list_head list;   spinlock_t list_lock;   struct kobject kobj;   const struct kset_uevent_ops *uevent_ops; } ;   223     struct kernel_param ;   228     struct kernel_param_ops {   unsigned int flags;   int (*set)(const char *, const struct kernel_param *);   int (*get)(char *, const struct kernel_param *);   void (*free)(void *); } ;    62     struct kparam_string ;    62     struct kparam_array ;    62     union __anonunion____missing_field_name_237 {   void *arg;   const struct kparam_string *str;   const struct kparam_array *arr; } ;    62     struct kernel_param {   const char *name;   struct module *mod;   const struct kernel_param_ops *ops;   const u16 perm;   s8 level;   u8 flags;   union __anonunion____missing_field_name_237 __annonCompField51; } ;    83     struct kparam_string {   unsigned int maxlen;   char *string; } ;    89     struct kparam_array {   unsigned int max;   unsigned int elemsize;   unsigned int *num;   const struct kernel_param_ops *ops;   void *elem; } ;   470     struct exception_table_entry ;    24     struct latch_tree_node {   struct rb_node node[2U]; } ;   211     struct mod_arch_specific { } ;    39     struct module_param_attrs ;    39     struct module_kobject {   struct kobject kobj;   struct module *mod;   struct kobject *drivers_dir;   struct module_param_attrs *mp;   struct completion *kobj_completion; } ;    50     struct module_attribute {   struct attribute attr;   ssize_t  (*show)(struct module_attribute *, struct module_kobject *, char *);   ssize_t  (*store)(struct module_attribute *, struct module_kobject *, const char *, size_t );   void (*setup)(struct module *, const char *);   int (*test)(struct module *);   void (*free)(struct module *); } ;   277     enum module_state {   MODULE_STATE_LIVE = 0,   MODULE_STATE_COMING = 1,   MODULE_STATE_GOING = 2,   MODULE_STATE_UNFORMED = 3 } ;   284     struct mod_tree_node {   struct module *mod;   struct latch_tree_node node; } ;   291     struct module_layout {   void *base;   unsigned int size;   unsigned int text_size;   unsigned int ro_size;   unsigned int ro_after_init_size;   struct mod_tree_node mtn; } ;   307     struct mod_kallsyms {   Elf64_Sym *symtab;   unsigned int num_symtab;   char *strtab; } ;   321     struct klp_modinfo {   Elf64_Ehdr hdr;   Elf64_Shdr *sechdrs;   char *secstrings;   unsigned int symndx; } ;   329     struct module_sect_attrs ;   329     struct module_notes_attrs ;   329     struct trace_event_call ;   329     struct trace_enum_map ;   329     struct module {   enum module_state state;   struct list_head list;   char name[56U];   struct module_kobject mkobj;   struct module_attribute *modinfo_attrs;   const char *version;   const char *srcversion;   struct kobject *holders_dir;   const struct kernel_symbol *syms;   const unsigned long *crcs;   unsigned int num_syms;   struct mutex param_lock;   struct kernel_param *kp;   unsigned int num_kp;   unsigned int num_gpl_syms;   const struct kernel_symbol *gpl_syms;   const unsigned long *gpl_crcs;   const struct kernel_symbol *unused_syms;   const unsigned long *unused_crcs;   unsigned int num_unused_syms;   unsigned int num_unused_gpl_syms;   const struct kernel_symbol *unused_gpl_syms;   const unsigned long *unused_gpl_crcs;   bool sig_ok;   bool async_probe_requested;   const struct kernel_symbol *gpl_future_syms;   const unsigned long *gpl_future_crcs;   unsigned int num_gpl_future_syms;   unsigned int num_exentries;   struct exception_table_entry *extable;   int (*init)();   struct module_layout core_layout;   struct module_layout init_layout;   struct mod_arch_specific arch;   unsigned int taints;   unsigned int num_bugs;   struct list_head bug_list;   struct bug_entry *bug_table;   struct mod_kallsyms *kallsyms;   struct mod_kallsyms core_kallsyms;   struct module_sect_attrs *sect_attrs;   struct module_notes_attrs *notes_attrs;   char *args;   void *percpu;   unsigned int percpu_size;   unsigned int num_tracepoints;   const struct tracepoint **tracepoints_ptrs;   unsigned int num_trace_bprintk_fmt;   const char **trace_bprintk_fmt_start;   struct trace_event_call **trace_events;   unsigned int num_trace_events;   struct trace_enum_map **trace_enums;   unsigned int num_trace_enums;   bool klp;   bool klp_alive;   struct klp_modinfo *klp_info;   struct list_head source_list;   struct list_head target_list;   void (*exit)();   atomic_t refcnt;   ctor_fn_t  (**ctors)();   unsigned int num_ctors; } ;   799     struct clk ;    15     struct klist_node ;    37     struct klist_node {   void *n_klist;   struct list_head n_node;   struct kref n_ref; } ;    93     struct hlist_bl_node ;    93     struct hlist_bl_head {   struct hlist_bl_node *first; } ;    36     struct hlist_bl_node {   struct hlist_bl_node *next;   struct hlist_bl_node **pprev; } ;   114     struct __anonstruct____missing_field_name_287 {   spinlock_t lock;   int count; } ;   114     union __anonunion____missing_field_name_286 {   struct __anonstruct____missing_field_name_287 __annonCompField52; } ;   114     struct lockref {   union __anonunion____missing_field_name_286 __annonCompField53; } ;    77     struct path ;    78     struct vfsmount ;    79     struct __anonstruct____missing_field_name_289 {   u32 hash;   u32 len; } ;    79     union __anonunion____missing_field_name_288 {   struct __anonstruct____missing_field_name_289 __annonCompField54;   u64 hash_len; } ;    79     struct qstr {   union __anonunion____missing_field_name_288 __annonCompField55;   const unsigned char *name; } ;    65     struct dentry_operations ;    65     union __anonunion____missing_field_name_290 {   struct list_head d_lru;   wait_queue_head_t *d_wait; } ;    65     union __anonunion_d_u_291 {   struct hlist_node d_alias;   struct hlist_bl_node d_in_lookup_hash;   struct callback_head d_rcu; } ;    65     struct dentry {   unsigned int d_flags;   seqcount_t d_seq;   struct hlist_bl_node d_hash;   struct dentry *d_parent;   struct qstr d_name;   struct inode *d_inode;   unsigned char d_iname[32U];   struct lockref d_lockref;   const struct dentry_operations *d_op;   struct super_block *d_sb;   unsigned long d_time;   void *d_fsdata;   union __anonunion____missing_field_name_290 __annonCompField56;   struct list_head d_child;   struct list_head d_subdirs;   union __anonunion_d_u_291 d_u; } ;   121     struct dentry_operations {   int (*d_revalidate)(struct dentry *, unsigned int);   int (*d_weak_revalidate)(struct dentry *, unsigned int);   int (*d_hash)(const struct dentry *, struct qstr *);   int (*d_compare)(const struct dentry *, unsigned int, const char *, const struct qstr *);   int (*d_delete)(const struct dentry *);   int (*d_init)(struct dentry *);   void (*d_release)(struct dentry *);   void (*d_prune)(struct dentry *);   void (*d_iput)(struct dentry *, struct inode *);   char * (*d_dname)(struct dentry *, char *, int);   struct vfsmount * (*d_automount)(struct path *);   int (*d_manage)(struct dentry *, bool );   struct dentry * (*d_real)(struct dentry *, const struct inode *, unsigned int); } ;   592     struct path {   struct vfsmount *mnt;   struct dentry *dentry; } ;    19     struct shrink_control {   gfp_t gfp_mask;   unsigned long nr_to_scan;   int nid;   struct mem_cgroup *memcg; } ;    27     struct shrinker {   unsigned long int (*count_objects)(struct shrinker *, struct shrink_control *);   unsigned long int (*scan_objects)(struct shrinker *, struct shrink_control *);   int seeks;   long batch;   unsigned long flags;   struct list_head list;   atomic_long_t *nr_deferred; } ;    80     struct list_lru_one {   struct list_head list;   long nr_items; } ;    32     struct list_lru_memcg {   struct list_lru_one *lru[0U]; } ;    37     struct list_lru_node {   spinlock_t lock;   struct list_lru_one lru;   struct list_lru_memcg *memcg_lrus; } ;    47     struct list_lru {   struct list_lru_node *node;   struct list_head list; } ;    63     struct __anonstruct____missing_field_name_293 {   struct radix_tree_node *parent;   void *private_data; } ;    63     union __anonunion____missing_field_name_292 {   struct __anonstruct____missing_field_name_293 __annonCompField57;   struct callback_head callback_head; } ;    63     struct radix_tree_node {   unsigned char shift;   unsigned char offset;   unsigned int count;   union __anonunion____missing_field_name_292 __annonCompField58;   struct list_head private_list;   void *slots[64U];   unsigned long tags[3U][1U]; } ;   106     struct radix_tree_root {   gfp_t gfp_mask;   struct radix_tree_node *rnode; } ;   531     enum pid_type {   PIDTYPE_PID = 0,   PIDTYPE_PGID = 1,   PIDTYPE_SID = 2,   PIDTYPE_MAX = 3 } ;   538     struct pid_namespace ;   538     struct upid {   int nr;   struct pid_namespace *ns;   struct hlist_node pid_chain; } ;    56     struct pid {   atomic_t count;   unsigned int level;   struct hlist_head tasks[3U];   struct callback_head rcu;   struct upid numbers[1U]; } ;    68     struct pid_link {   struct hlist_node node;   struct pid *pid; } ;    22     struct kernel_cap_struct {   __u32 cap[2U]; } ;    25     typedef struct kernel_cap_struct kernel_cap_t;    45     struct fiemap_extent {   __u64 fe_logical;   __u64 fe_physical;   __u64 fe_length;   __u64 fe_reserved64[2U];   __u32 fe_flags;   __u32 fe_reserved[3U]; } ;    38     enum migrate_mode {   MIGRATE_ASYNC = 0,   MIGRATE_SYNC_LIGHT = 1,   MIGRATE_SYNC = 2 } ;    44     enum rcu_sync_type {   RCU_SYNC = 0,   RCU_SCHED_SYNC = 1,   RCU_BH_SYNC = 2 } ;    50     struct rcu_sync {   int gp_state;   int gp_count;   wait_queue_head_t gp_wait;   int cb_state;   struct callback_head cb_head;   enum rcu_sync_type gp_type; } ;    66     struct percpu_rw_semaphore {   struct rcu_sync rss;   unsigned int *read_count;   struct rw_semaphore rw_sem;   wait_queue_head_t writer;   int readers_block; } ;    87     struct block_device ;    88     struct io_context ;    89     struct cgroup_subsys_state ;   273     struct delayed_call {   void (*fn)(void *);   void *arg; } ;   264     struct backing_dev_info ;   265     struct bdi_writeback ;   266     struct export_operations ;   269     struct kiocb ;   270     struct pipe_inode_info ;   271     struct poll_table_struct ;   272     struct kstatfs ;   273     struct swap_info_struct ;   274     struct iov_iter ;   275     struct fscrypt_info ;   276     struct fscrypt_operations ;    76     struct iattr {   unsigned int ia_valid;   umode_t ia_mode;   kuid_t ia_uid;   kgid_t ia_gid;   loff_t ia_size;   struct timespec ia_atime;   struct timespec ia_mtime;   struct timespec ia_ctime;   struct file *ia_file; } ;   213     struct dquot ;   214     struct kqid ;    19     typedef __kernel_uid32_t projid_t;    23     struct __anonstruct_kprojid_t_302 {   projid_t val; } ;    23     typedef struct __anonstruct_kprojid_t_302 kprojid_t;   181     enum quota_type {   USRQUOTA = 0,   GRPQUOTA = 1,   PRJQUOTA = 2 } ;    66     typedef long long qsize_t;    67     union __anonunion____missing_field_name_303 {   kuid_t uid;   kgid_t gid;   kprojid_t projid; } ;    67     struct kqid {   union __anonunion____missing_field_name_303 __annonCompField60;   enum quota_type type; } ;   194     struct mem_dqblk {   qsize_t dqb_bhardlimit;   qsize_t dqb_bsoftlimit;   qsize_t dqb_curspace;   qsize_t dqb_rsvspace;   qsize_t dqb_ihardlimit;   qsize_t dqb_isoftlimit;   qsize_t dqb_curinodes;   time64_t dqb_btime;   time64_t dqb_itime; } ;   216     struct quota_format_type ;   217     struct mem_dqinfo {   struct quota_format_type *dqi_format;   int dqi_fmt_id;   struct list_head dqi_dirty_list;   unsigned long dqi_flags;   unsigned int dqi_bgrace;   unsigned int dqi_igrace;   qsize_t dqi_max_spc_limit;   qsize_t dqi_max_ino_limit;   void *dqi_priv; } ;   282     struct dquot {   struct hlist_node dq_hash;   struct list_head dq_inuse;   struct list_head dq_free;   struct list_head dq_dirty;   struct mutex dq_lock;   atomic_t dq_count;   wait_queue_head_t dq_wait_unused;   struct super_block *dq_sb;   struct kqid dq_id;   loff_t dq_off;   unsigned long dq_flags;   struct mem_dqblk dq_dqb; } ;   309     struct quota_format_ops {   int (*check_quota_file)(struct super_block *, int);   int (*read_file_info)(struct super_block *, int);   int (*write_file_info)(struct super_block *, int);   int (*free_file_info)(struct super_block *, int);   int (*read_dqblk)(struct dquot *);   int (*commit_dqblk)(struct dquot *);   int (*release_dqblk)(struct dquot *);   int (*get_next_id)(struct super_block *, struct kqid *); } ;   321     struct dquot_operations {   int (*write_dquot)(struct dquot *);   struct dquot * (*alloc_dquot)(struct super_block *, int);   void (*destroy_dquot)(struct dquot *);   int (*acquire_dquot)(struct dquot *);   int (*release_dquot)(struct dquot *);   int (*mark_dirty)(struct dquot *);   int (*write_info)(struct super_block *, int);   qsize_t * (*get_reserved_space)(struct inode *);   int (*get_projid)(struct inode *, kprojid_t *);   int (*get_next_id)(struct super_block *, struct kqid *); } ;   338     struct qc_dqblk {   int d_fieldmask;   u64 d_spc_hardlimit;   u64 d_spc_softlimit;   u64 d_ino_hardlimit;   u64 d_ino_softlimit;   u64 d_space;   u64 d_ino_count;   s64 d_ino_timer;   s64 d_spc_timer;   int d_ino_warns;   int d_spc_warns;   u64 d_rt_spc_hardlimit;   u64 d_rt_spc_softlimit;   u64 d_rt_space;   s64 d_rt_spc_timer;   int d_rt_spc_warns; } ;   361     struct qc_type_state {   unsigned int flags;   unsigned int spc_timelimit;   unsigned int ino_timelimit;   unsigned int rt_spc_timelimit;   unsigned int spc_warnlimit;   unsigned int ino_warnlimit;   unsigned int rt_spc_warnlimit;   unsigned long long ino;   blkcnt_t blocks;   blkcnt_t nextents; } ;   407     struct qc_state {   unsigned int s_incoredqs;   struct qc_type_state s_state[3U]; } ;   418     struct qc_info {   int i_fieldmask;   unsigned int i_flags;   unsigned int i_spc_timelimit;   unsigned int i_ino_timelimit;   unsigned int i_rt_spc_timelimit;   unsigned int i_spc_warnlimit;   unsigned int i_ino_warnlimit;   unsigned int i_rt_spc_warnlimit; } ;   431     struct quotactl_ops {   int (*quota_on)(struct super_block *, int, int, struct path *);   int (*quota_off)(struct super_block *, int);   int (*quota_enable)(struct super_block *, unsigned int);   int (*quota_disable)(struct super_block *, unsigned int);   int (*quota_sync)(struct super_block *, int);   int (*set_info)(struct super_block *, int, struct qc_info *);   int (*get_dqblk)(struct super_block *, struct kqid , struct qc_dqblk *);   int (*get_nextdqblk)(struct super_block *, struct kqid *, struct qc_dqblk *);   int (*set_dqblk)(struct super_block *, struct kqid , struct qc_dqblk *);   int (*get_state)(struct super_block *, struct qc_state *);   int (*rm_xquota)(struct super_block *, unsigned int); } ;   447     struct quota_format_type {   int qf_fmt_id;   const struct quota_format_ops *qf_ops;   struct module *qf_owner;   struct quota_format_type *qf_next; } ;   511     struct quota_info {   unsigned int flags;   struct mutex dqio_mutex;   struct mutex dqonoff_mutex;   struct inode *files[3U];   struct mem_dqinfo info[3U];   const struct quota_format_ops *ops[3U]; } ;   541     struct writeback_control ;   542     struct kiocb {   struct file *ki_filp;   loff_t ki_pos;   void (*ki_complete)(struct kiocb *, long, long);   void *private;   int ki_flags; } ;   368     struct address_space_operations {   int (*writepage)(struct page *, struct writeback_control *);   int (*readpage)(struct file *, struct page *);   int (*writepages)(struct address_space *, struct writeback_control *);   int (*set_page_dirty)(struct page *);   int (*readpages)(struct file *, struct address_space *, struct list_head *, unsigned int);   int (*write_begin)(struct file *, struct address_space *, loff_t , unsigned int, unsigned int, struct page **, void **);   int (*write_end)(struct file *, struct address_space *, loff_t , unsigned int, unsigned int, struct page *, void *);   sector_t  (*bmap)(struct address_space *, sector_t );   void (*invalidatepage)(struct page *, unsigned int, unsigned int);   int (*releasepage)(struct page *, gfp_t );   void (*freepage)(struct page *);   ssize_t  (*direct_IO)(struct kiocb *, struct iov_iter *);   int (*migratepage)(struct address_space *, struct page *, struct page *, enum migrate_mode );   bool  (*isolate_page)(struct page *, isolate_mode_t );   void (*putback_page)(struct page *);   int (*launder_page)(struct page *);   int (*is_partially_uptodate)(struct page *, unsigned long, unsigned long);   void (*is_dirty_writeback)(struct page *, bool *, bool *);   int (*error_remove_page)(struct address_space *, struct page *);   int (*swap_activate)(struct swap_info_struct *, struct file *, sector_t *);   void (*swap_deactivate)(struct file *); } ;   427     struct address_space {   struct inode *host;   struct radix_tree_root page_tree;   spinlock_t tree_lock;   atomic_t i_mmap_writable;   struct rb_root i_mmap;   struct rw_semaphore i_mmap_rwsem;   unsigned long nrpages;   unsigned long nrexceptional;   unsigned long writeback_index;   const struct address_space_operations *a_ops;   unsigned long flags;   spinlock_t private_lock;   gfp_t gfp_mask;   struct list_head private_list;   void *private_data; } ;   449     struct request_queue ;   450     struct hd_struct ;   450     struct gendisk ;   450     struct block_device {   dev_t bd_dev;   int bd_openers;   struct inode *bd_inode;   struct super_block *bd_super;   struct mutex bd_mutex;   void *bd_claiming;   void *bd_holder;   int bd_holders;   bool bd_write_holder;   struct list_head bd_holder_disks;   struct block_device *bd_contains;   unsigned int bd_block_size;   struct hd_struct *bd_part;   unsigned int bd_part_count;   int bd_invalidated;   struct gendisk *bd_disk;   struct request_queue *bd_queue;   struct list_head bd_list;   unsigned long bd_private;   int bd_fsfreeze_count;   struct mutex bd_fsfreeze_mutex; } ;   565     struct posix_acl ;   592     struct inode_operations ;   592     union __anonunion____missing_field_name_308 {   const unsigned int i_nlink;   unsigned int __i_nlink; } ;   592     union __anonunion____missing_field_name_309 {   struct hlist_head i_dentry;   struct callback_head i_rcu; } ;   592     struct file_lock_context ;   592     struct cdev ;   592     union __anonunion____missing_field_name_310 {   struct pipe_inode_info *i_pipe;   struct block_device *i_bdev;   struct cdev *i_cdev;   char *i_link;   unsigned int i_dir_seq; } ;   592     struct inode {   umode_t i_mode;   unsigned short i_opflags;   kuid_t i_uid;   kgid_t i_gid;   unsigned int i_flags;   struct posix_acl *i_acl;   struct posix_acl *i_default_acl;   const struct inode_operations *i_op;   struct super_block *i_sb;   struct address_space *i_mapping;   void *i_security;   unsigned long i_ino;   union __anonunion____missing_field_name_308 __annonCompField61;   dev_t i_rdev;   loff_t i_size;   struct timespec i_atime;   struct timespec i_mtime;   struct timespec i_ctime;   spinlock_t i_lock;   unsigned short i_bytes;   unsigned int i_blkbits;   blkcnt_t i_blocks;   unsigned long i_state;   struct rw_semaphore i_rwsem;   unsigned long dirtied_when;   unsigned long dirtied_time_when;   struct hlist_node i_hash;   struct list_head i_io_list;   struct bdi_writeback *i_wb;   int i_wb_frn_winner;   u16 i_wb_frn_avg_time;   u16 i_wb_frn_history;   struct list_head i_lru;   struct list_head i_sb_list;   struct list_head i_wb_list;   union __anonunion____missing_field_name_309 __annonCompField62;   u64 i_version;   atomic_t i_count;   atomic_t i_dio_count;   atomic_t i_writecount;   atomic_t i_readcount;   const struct file_operations *i_fop;   struct file_lock_context *i_flctx;   struct address_space i_data;   struct list_head i_devices;   union __anonunion____missing_field_name_310 __annonCompField63;   __u32 i_generation;   __u32 i_fsnotify_mask;   struct hlist_head i_fsnotify_marks;   struct fscrypt_info *i_crypt_info;   void *i_private; } ;   847     struct fown_struct {   rwlock_t lock;   struct pid *pid;   enum pid_type pid_type;   kuid_t uid;   kuid_t euid;   int signum; } ;   855     struct file_ra_state {   unsigned long start;   unsigned int size;   unsigned int async_size;   unsigned int ra_pages;   unsigned int mmap_miss;   loff_t prev_pos; } ;   878     union __anonunion_f_u_311 {   struct llist_node fu_llist;   struct callback_head fu_rcuhead; } ;   878     struct file {   union __anonunion_f_u_311 f_u;   struct path f_path;   struct inode *f_inode;   const struct file_operations *f_op;   spinlock_t f_lock;   atomic_long_t f_count;   unsigned int f_flags;   fmode_t f_mode;   struct mutex f_pos_lock;   loff_t f_pos;   struct fown_struct f_owner;   const struct cred *f_cred;   struct file_ra_state f_ra;   u64 f_version;   void *f_security;   void *private_data;   struct list_head f_ep_links;   struct list_head f_tfile_llink;   struct address_space *f_mapping; } ;   963     typedef void *fl_owner_t;   964     struct file_lock ;   965     struct file_lock_operations {   void (*fl_copy_lock)(struct file_lock *, struct file_lock *);   void (*fl_release_private)(struct file_lock *); } ;   971     struct lock_manager_operations {   int (*lm_compare_owner)(struct file_lock *, struct file_lock *);   unsigned long int (*lm_owner_key)(struct file_lock *);   fl_owner_t  (*lm_get_owner)(fl_owner_t );   void (*lm_put_owner)(fl_owner_t );   void (*lm_notify)(struct file_lock *);   int (*lm_grant)(struct file_lock *, int);   bool  (*lm_break)(struct file_lock *);   int (*lm_change)(struct file_lock *, int, struct list_head *);   void (*lm_setup)(struct file_lock *, void **); } ;   998     struct nlm_lockowner ;   999     struct nfs_lock_info {   u32 state;   struct nlm_lockowner *owner;   struct list_head list; } ;    14     struct nfs4_lock_state ;    15     struct nfs4_lock_info {   struct nfs4_lock_state *owner; } ;    19     struct fasync_struct ;    19     struct __anonstruct_afs_313 {   struct list_head link;   int state; } ;    19     union __anonunion_fl_u_312 {   struct nfs_lock_info nfs_fl;   struct nfs4_lock_info nfs4_fl;   struct __anonstruct_afs_313 afs; } ;    19     struct file_lock {   struct file_lock *fl_next;   struct list_head fl_list;   struct hlist_node fl_link;   struct list_head fl_block;   fl_owner_t fl_owner;   unsigned int fl_flags;   unsigned char fl_type;   unsigned int fl_pid;   int fl_link_cpu;   struct pid *fl_nspid;   wait_queue_head_t fl_wait;   struct file *fl_file;   loff_t fl_start;   loff_t fl_end;   struct fasync_struct *fl_fasync;   unsigned long fl_break_time;   unsigned long fl_downgrade_time;   const struct file_lock_operations *fl_ops;   const struct lock_manager_operations *fl_lmops;   union __anonunion_fl_u_312 fl_u; } ;  1051     struct file_lock_context {   spinlock_t flc_lock;   struct list_head flc_flock;   struct list_head flc_posix;   struct list_head flc_lease; } ;  1118     struct files_struct ;  1271     struct fasync_struct {   spinlock_t fa_lock;   int magic;   int fa_fd;   struct fasync_struct *fa_next;   struct file *fa_file;   struct callback_head fa_rcu; } ;  1306     struct sb_writers {   int frozen;   wait_queue_head_t wait_unfrozen;   struct percpu_rw_semaphore rw_sem[3U]; } ;  1336     struct super_operations ;  1336     struct xattr_handler ;  1336     struct mtd_info ;  1336     struct super_block {   struct list_head s_list;   dev_t s_dev;   unsigned char s_blocksize_bits;   unsigned long s_blocksize;   loff_t s_maxbytes;   struct file_system_type *s_type;   const struct super_operations *s_op;   const struct dquot_operations *dq_op;   const struct quotactl_ops *s_qcop;   const struct export_operations *s_export_op;   unsigned long s_flags;   unsigned long s_iflags;   unsigned long s_magic;   struct dentry *s_root;   struct rw_semaphore s_umount;   int s_count;   atomic_t s_active;   void *s_security;   const struct xattr_handler **s_xattr;   const struct fscrypt_operations *s_cop;   struct hlist_bl_head s_anon;   struct list_head s_mounts;   struct block_device *s_bdev;   struct backing_dev_info *s_bdi;   struct mtd_info *s_mtd;   struct hlist_node s_instances;   unsigned int s_quota_types;   struct quota_info s_dquot;   struct sb_writers s_writers;   char s_id[32U];   u8 s_uuid[16U];   void *s_fs_info;   unsigned int s_max_links;   fmode_t s_mode;   u32 s_time_gran;   struct mutex s_vfs_rename_mutex;   char *s_subtype;   char *s_options;   const struct dentry_operations *s_d_op;   int cleancache_poolid;   struct shrinker s_shrink;   atomic_long_t s_remove_count;   int s_readonly_remount;   struct workqueue_struct *s_dio_done_wq;   struct hlist_head s_pins;   struct user_namespace *s_user_ns;   struct list_lru s_dentry_lru;   struct list_lru s_inode_lru;   struct callback_head rcu;   struct work_struct destroy_work;   struct mutex s_sync_lock;   int s_stack_depth;   spinlock_t s_inode_list_lock;   struct list_head s_inodes;   spinlock_t s_inode_wblist_lock;   struct list_head s_inodes_wb; } ;  1620     struct fiemap_extent_info {   unsigned int fi_flags;   unsigned int fi_extents_mapped;   unsigned int fi_extents_max;   struct fiemap_extent *fi_extents_start; } ;  1633     struct dir_context ;  1658     struct dir_context {   int (*actor)(struct dir_context *, const char *, int, loff_t , u64 , unsigned int);   loff_t pos; } ;  1665     struct file_operations {   struct module *owner;   loff_t  (*llseek)(struct file *, loff_t , int);   ssize_t  (*read)(struct file *, char *, size_t , loff_t *);   ssize_t  (*write)(struct file *, const char *, size_t , loff_t *);   ssize_t  (*read_iter)(struct kiocb *, struct iov_iter *);   ssize_t  (*write_iter)(struct kiocb *, struct iov_iter *);   int (*iterate)(struct file *, struct dir_context *);   int (*iterate_shared)(struct file *, struct dir_context *);   unsigned int (*poll)(struct file *, struct poll_table_struct *);   long int (*unlocked_ioctl)(struct file *, unsigned int, unsigned long);   long int (*compat_ioctl)(struct file *, unsigned int, unsigned long);   int (*mmap)(struct file *, struct vm_area_struct *);   int (*open)(struct inode *, struct file *);   int (*flush)(struct file *, fl_owner_t );   int (*release)(struct inode *, struct file *);   int (*fsync)(struct file *, loff_t , loff_t , int);   int (*aio_fsync)(struct kiocb *, int);   int (*fasync)(int, struct file *, int);   int (*lock)(struct file *, int, struct file_lock *);   ssize_t  (*sendpage)(struct file *, struct page *, int, size_t , loff_t *, int);   unsigned long int (*get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);   int (*check_flags)(int);   int (*flock)(struct file *, int, struct file_lock *);   ssize_t  (*splice_write)(struct pipe_inode_info *, struct file *, loff_t *, size_t , unsigned int);   ssize_t  (*splice_read)(struct file *, loff_t *, struct pipe_inode_info *, size_t , unsigned int);   int (*setlease)(struct file *, long, struct file_lock **, void **);   long int (*fallocate)(struct file *, int, loff_t , loff_t );   void (*show_fdinfo)(struct seq_file *, struct file *);   ssize_t  (*copy_file_range)(struct file *, loff_t , struct file *, loff_t , size_t , unsigned int);   int (*clone_file_range)(struct file *, loff_t , struct file *, loff_t , u64 );   ssize_t  (*dedupe_file_range)(struct file *, u64 , u64 , struct file *, u64 ); } ;  1734     struct inode_operations {   struct dentry * (*lookup)(struct inode *, struct dentry *, unsigned int);   const char * (*get_link)(struct dentry *, struct inode *, struct delayed_call *);   int (*permission)(struct inode *, int);   struct posix_acl * (*get_acl)(struct inode *, int);   int (*readlink)(struct dentry *, char *, int);   int (*create)(struct inode *, struct dentry *, umode_t , bool );   int (*link)(struct dentry *, struct inode *, struct dentry *);   int (*unlink)(struct inode *, struct dentry *);   int (*symlink)(struct inode *, struct dentry *, const char *);   int (*mkdir)(struct inode *, struct dentry *, umode_t );   int (*rmdir)(struct inode *, struct dentry *);   int (*mknod)(struct inode *, struct dentry *, umode_t , dev_t );   int (*rename)(struct inode *, struct dentry *, struct inode *, struct dentry *, unsigned int);   int (*setattr)(struct dentry *, struct iattr *);   int (*getattr)(struct vfsmount *, struct dentry *, struct kstat *);   ssize_t  (*listxattr)(struct dentry *, char *, size_t );   int (*fiemap)(struct inode *, struct fiemap_extent_info *, u64 , u64 );   int (*update_time)(struct inode *, struct timespec *, int);   int (*atomic_open)(struct inode *, struct dentry *, struct file *, unsigned int, umode_t , int *);   int (*tmpfile)(struct inode *, struct dentry *, umode_t );   int (*set_acl)(struct inode *, struct posix_acl *, int); } ;  1784     struct super_operations {   struct inode * (*alloc_inode)(struct super_block *);   void (*destroy_inode)(struct inode *);   void (*dirty_inode)(struct inode *, int);   int (*write_inode)(struct inode *, struct writeback_control *);   int (*drop_inode)(struct inode *);   void (*evict_inode)(struct inode *);   void (*put_super)(struct super_block *);   int (*sync_fs)(struct super_block *, int);   int (*freeze_super)(struct super_block *);   int (*freeze_fs)(struct super_block *);   int (*thaw_super)(struct super_block *);   int (*unfreeze_fs)(struct super_block *);   int (*statfs)(struct dentry *, struct kstatfs *);   int (*remount_fs)(struct super_block *, int *, char *);   void (*umount_begin)(struct super_block *);   int (*show_options)(struct seq_file *, struct dentry *);   int (*show_devname)(struct seq_file *, struct dentry *);   int (*show_path)(struct seq_file *, struct dentry *);   int (*show_stats)(struct seq_file *, struct dentry *);   ssize_t  (*quota_read)(struct super_block *, int, char *, size_t , loff_t );   ssize_t  (*quota_write)(struct super_block *, int, const char *, size_t , loff_t );   struct dquot ** (*get_dquots)(struct inode *);   int (*bdev_try_to_free_page)(struct super_block *, struct page *, gfp_t );   long int (*nr_cached_objects)(struct super_block *, struct shrink_control *);   long int (*free_cached_objects)(struct super_block *, struct shrink_control *); } ;  2027     struct file_system_type {   const char *name;   int fs_flags;   struct dentry * (*mount)(struct file_system_type *, int, const char *, void *);   void (*kill_sb)(struct super_block *);   struct module *owner;   struct file_system_type *next;   struct hlist_head fs_supers;   struct lock_class_key s_lock_key;   struct lock_class_key s_umount_key;   struct lock_class_key s_vfs_rename_key;   struct lock_class_key s_writers_key[3U];   struct lock_class_key i_lock_key;   struct lock_class_key i_mutex_key;   struct lock_class_key i_mutex_dir_key; } ;  3211     struct assoc_array_ptr ;  3211     struct assoc_array {   struct assoc_array_ptr *root;   unsigned long nr_leaves_on_tree; } ;    31     typedef int32_t key_serial_t;    34     typedef uint32_t key_perm_t;    35     struct key ;    36     struct user_struct ;    37     struct signal_struct ;    38     struct key_type ;    42     struct keyring_index_key {   struct key_type *type;   const char *description;   size_t desc_len; } ;    91     union key_payload {   void *rcu_data0;   void *data[4U]; } ;   128     union __anonunion____missing_field_name_314 {   struct list_head graveyard_link;   struct rb_node serial_node; } ;   128     struct key_user ;   128     union __anonunion____missing_field_name_315 {   time_t expiry;   time_t revoked_at; } ;   128     struct __anonstruct____missing_field_name_317 {   struct key_type *type;   char *description; } ;   128     union __anonunion____missing_field_name_316 {   struct keyring_index_key index_key;   struct __anonstruct____missing_field_name_317 __annonCompField66; } ;   128     struct __anonstruct____missing_field_name_319 {   struct list_head name_link;   struct assoc_array keys; } ;   128     union __anonunion____missing_field_name_318 {   union key_payload payload;   struct __anonstruct____missing_field_name_319 __annonCompField68;   int reject_error; } ;   128     struct key {   atomic_t usage;   key_serial_t serial;   union __anonunion____missing_field_name_314 __annonCompField64;   struct rw_semaphore sem;   struct key_user *user;   void *security;   union __anonunion____missing_field_name_315 __annonCompField65;   time_t last_used_at;   kuid_t uid;   kgid_t gid;   key_perm_t perm;   unsigned short quotalen;   unsigned short datalen;   unsigned long flags;   union __anonunion____missing_field_name_316 __annonCompField67;   union __anonunion____missing_field_name_318 __annonCompField69;   int (*restrict_link)(struct key *, const struct key_type *, const union key_payload *); } ;   377     struct audit_context ;    27     struct group_info {   atomic_t usage;   int ngroups;   kgid_t gid[0U]; } ;    85     struct cred {   atomic_t usage;   atomic_t subscribers;   void *put_addr;   unsigned int magic;   kuid_t uid;   kgid_t gid;   kuid_t suid;   kgid_t sgid;   kuid_t euid;   kgid_t egid;   kuid_t fsuid;   kgid_t fsgid;   unsigned int securebits;   kernel_cap_t cap_inheritable;   kernel_cap_t cap_permitted;   kernel_cap_t cap_effective;   kernel_cap_t cap_bset;   kernel_cap_t cap_ambient;   unsigned char jit_keyring;   struct key *session_keyring;   struct key *process_keyring;   struct key *thread_keyring;   struct key *request_key_auth;   void *security;   struct user_struct *user;   struct user_namespace *user_ns;   struct group_info *group_info;   struct callback_head rcu; } ;   368     struct seq_file {   char *buf;   size_t size;   size_t from;   size_t count;   size_t pad_until;   loff_t index;   loff_t read_pos;   u64 version;   struct mutex lock;   const struct seq_operations *op;   int poll_event;   const struct file *file;   void *private; } ;    30     struct seq_operations {   void * (*start)(struct seq_file *, loff_t *);   void (*stop)(struct seq_file *, void *);   void * (*next)(struct seq_file *, void *, loff_t *);   int (*show)(struct seq_file *, void *); } ;   222     struct pinctrl ;   223     struct pinctrl_state ;   194     struct dev_pin_info {   struct pinctrl *p;   struct pinctrl_state *default_state;   struct pinctrl_state *init_state;   struct pinctrl_state *sleep_state;   struct pinctrl_state *idle_state; } ;    84     struct plist_node {   int prio;   struct list_head prio_list;   struct list_head node_list; } ;     4     typedef unsigned long cputime_t;    26     struct sem_undo_list ;    26     struct sysv_sem {   struct sem_undo_list *undo_list; } ;    26     struct sysv_shm {   struct list_head shm_clist; } ;    24     struct __anonstruct_sigset_t_320 {   unsigned long sig[1U]; } ;    24     typedef struct __anonstruct_sigset_t_320 sigset_t;    25     struct siginfo ;    17     typedef void __signalfn_t(int);    18     typedef __signalfn_t *__sighandler_t;    20     typedef void __restorefn_t();    21     typedef __restorefn_t *__sigrestore_t;    38     union sigval {   int sival_int;   void *sival_ptr; } ;    10     typedef union sigval sigval_t;    11     struct __anonstruct__kill_322 {   __kernel_pid_t _pid;   __kernel_uid32_t _uid; } ;    11     struct __anonstruct__timer_323 {   __kernel_timer_t _tid;   int _overrun;   char _pad[0U];   sigval_t _sigval;   int _sys_private; } ;    11     struct __anonstruct__rt_324 {   __kernel_pid_t _pid;   __kernel_uid32_t _uid;   sigval_t _sigval; } ;    11     struct __anonstruct__sigchld_325 {   __kernel_pid_t _pid;   __kernel_uid32_t _uid;   int _status;   __kernel_clock_t _utime;   __kernel_clock_t _stime; } ;    11     struct __anonstruct__addr_bnd_328 {   void *_lower;   void *_upper; } ;    11     union __anonunion____missing_field_name_327 {   struct __anonstruct__addr_bnd_328 _addr_bnd;   __u32 _pkey; } ;    11     struct __anonstruct__sigfault_326 {   void *_addr;   short _addr_lsb;   union __anonunion____missing_field_name_327 __annonCompField70; } ;    11     struct __anonstruct__sigpoll_329 {   long _band;   int _fd; } ;    11     struct __anonstruct__sigsys_330 {   void *_call_addr;   int _syscall;   unsigned int _arch; } ;    11     union __anonunion__sifields_321 {   int _pad[28U];   struct __anonstruct__kill_322 _kill;   struct __anonstruct__timer_323 _timer;   struct __anonstruct__rt_324 _rt;   struct __anonstruct__sigchld_325 _sigchld;   struct __anonstruct__sigfault_326 _sigfault;   struct __anonstruct__sigpoll_329 _sigpoll;   struct __anonstruct__sigsys_330 _sigsys; } ;    11     struct siginfo {   int si_signo;   int si_errno;   int si_code;   union __anonunion__sifields_321 _sifields; } ;   118     typedef struct siginfo siginfo_t;    22     struct sigpending {   struct list_head list;   sigset_t signal; } ;   257     struct sigaction {   __sighandler_t sa_handler;   unsigned long sa_flags;   __sigrestore_t sa_restorer;   sigset_t sa_mask; } ;   271     struct k_sigaction {   struct sigaction sa; } ;    43     struct seccomp_filter ;    44     struct seccomp {   int mode;   struct seccomp_filter *filter; } ;    40     struct rt_mutex_waiter ;    41     struct rlimit {   __kernel_ulong_t rlim_cur;   __kernel_ulong_t rlim_max; } ;    11     struct timerqueue_node {   struct rb_node node;   ktime_t expires; } ;    12     struct timerqueue_head {   struct rb_root head;   struct timerqueue_node *next; } ;    50     struct hrtimer_clock_base ;    51     struct hrtimer_cpu_base ;    60     enum hrtimer_restart {   HRTIMER_NORESTART = 0,   HRTIMER_RESTART = 1 } ;    65     struct hrtimer {   struct timerqueue_node node;   ktime_t _softexpires;   enum hrtimer_restart  (*function)(struct hrtimer *);   struct hrtimer_clock_base *base;   u8 state;   u8 is_rel;   int start_pid;   void *start_site;   char start_comm[16U]; } ;   125     struct hrtimer_clock_base {   struct hrtimer_cpu_base *cpu_base;   int index;   clockid_t clockid;   struct timerqueue_head active;   ktime_t  (*get_time)();   ktime_t offset; } ;   158     struct hrtimer_cpu_base {   raw_spinlock_t lock;   seqcount_t seq;   struct hrtimer *running;   unsigned int cpu;   unsigned int active_bases;   unsigned int clock_was_set_seq;   bool migration_enabled;   bool nohz_active;   unsigned char in_hrtirq;   unsigned char hres_active;   unsigned char hang_detected;   ktime_t expires_next;   struct hrtimer *next_timer;   unsigned int nr_events;   unsigned int nr_retries;   unsigned int nr_hangs;   unsigned int max_hang_time;   struct hrtimer_clock_base clock_base[4U]; } ;    12     enum kcov_mode {   KCOV_MODE_DISABLED = 0,   KCOV_MODE_TRACE = 1 } ;    17     struct task_io_accounting {   u64 rchar;   u64 wchar;   u64 syscr;   u64 syscw;   u64 read_bytes;   u64 write_bytes;   u64 cancelled_write_bytes; } ;    45     struct latency_record {   unsigned long backtrace[12U];   unsigned int count;   unsigned long time;   unsigned long max; } ;    41     struct percpu_ref ;    55     typedef void percpu_ref_func_t(struct percpu_ref *);    68     struct percpu_ref {   atomic_long_t count;   unsigned long percpu_count_ptr;   percpu_ref_func_t *release;   percpu_ref_func_t *confirm_switch;   bool force_atomic;   struct callback_head rcu; } ;   325     struct cgroup ;   326     struct cgroup_root ;   327     struct cgroup_subsys ;   328     struct cgroup_taskset ;   372     struct cgroup_file {   struct kernfs_node *kn; } ;    90     struct cgroup_subsys_state {   struct cgroup *cgroup;   struct cgroup_subsys *ss;   struct percpu_ref refcnt;   struct cgroup_subsys_state *parent;   struct list_head sibling;   struct list_head children;   int id;   unsigned int flags;   u64 serial_nr;   atomic_t online_cnt;   struct callback_head callback_head;   struct work_struct destroy_work; } ;   141     struct css_set {   atomic_t refcount;   struct hlist_node hlist;   struct list_head tasks;   struct list_head mg_tasks;   struct list_head cgrp_links;   struct cgroup *dfl_cgrp;   struct cgroup_subsys_state *subsys[13U];   struct list_head mg_preload_node;   struct list_head mg_node;   struct cgroup *mg_src_cgrp;   struct cgroup *mg_dst_cgrp;   struct css_set *mg_dst_cset;   struct list_head e_cset_node[13U];   struct list_head task_iters;   bool dead;   struct callback_head callback_head; } ;   221     struct cgroup {   struct cgroup_subsys_state self;   unsigned long flags;   int id;   int level;   int populated_cnt;   struct kernfs_node *kn;   struct cgroup_file procs_file;   struct cgroup_file events_file;   u16 subtree_control;   u16 subtree_ss_mask;   u16 old_subtree_control;   u16 old_subtree_ss_mask;   struct cgroup_subsys_state *subsys[13U];   struct cgroup_root *root;   struct list_head cset_links;   struct list_head e_csets[13U];   struct list_head pidlists;   struct mutex pidlist_mutex;   wait_queue_head_t offline_waitq;   struct work_struct release_agent_work;   int ancestor_ids[]; } ;   306     struct cgroup_root {   struct kernfs_root *kf_root;   unsigned int subsys_mask;   int hierarchy_id;   struct cgroup cgrp;   int cgrp_ancestor_id_storage;   atomic_t nr_cgrps;   struct list_head root_list;   unsigned int flags;   struct idr cgroup_idr;   char release_agent_path[4096U];   char name[64U]; } ;   345     struct cftype {   char name[64U];   unsigned long private;   size_t max_write_len;   unsigned int flags;   unsigned int file_offset;   struct cgroup_subsys *ss;   struct list_head node;   struct kernfs_ops *kf_ops;   u64  (*read_u64)(struct cgroup_subsys_state *, struct cftype *);   s64  (*read_s64)(struct cgroup_subsys_state *, struct cftype *);   int (*seq_show)(struct seq_file *, void *);   void * (*seq_start)(struct seq_file *, loff_t *);   void * (*seq_next)(struct seq_file *, void *, loff_t *);   void (*seq_stop)(struct seq_file *, void *);   int (*write_u64)(struct cgroup_subsys_state *, struct cftype *, u64 );   int (*write_s64)(struct cgroup_subsys_state *, struct cftype *, s64 );   ssize_t  (*write)(struct kernfs_open_file *, char *, size_t , loff_t );   struct lock_class_key lockdep_key; } ;   430     struct cgroup_subsys {   struct cgroup_subsys_state * (*css_alloc)(struct cgroup_subsys_state *);   int (*css_online)(struct cgroup_subsys_state *);   void (*css_offline)(struct cgroup_subsys_state *);   void (*css_released)(struct cgroup_subsys_state *);   void (*css_free)(struct cgroup_subsys_state *);   void (*css_reset)(struct cgroup_subsys_state *);   int (*can_attach)(struct cgroup_taskset *);   void (*cancel_attach)(struct cgroup_taskset *);   void (*attach)(struct cgroup_taskset *);   void (*post_attach)();   int (*can_fork)(struct task_struct *);   void (*cancel_fork)(struct task_struct *);   void (*fork)(struct task_struct *);   void (*exit)(struct task_struct *);   void (*free)(struct task_struct *);   void (*bind)(struct cgroup_subsys_state *);   bool early_init;   bool implicit_on_dfl;   bool broken_hierarchy;   bool warned_broken_hierarchy;   int id;   const char *name;   const char *legacy_name;   struct cgroup_root *root;   struct idr css_idr;   struct list_head cfts;   struct cftype *dfl_cftypes;   struct cftype *legacy_cftypes;   unsigned int depends_on; } ;   128     struct futex_pi_state ;   129     struct robust_list_head ;   130     struct bio_list ;   131     struct fs_struct ;   132     struct perf_event_context ;   133     struct blk_plug ;   134     struct nameidata ;   188     struct cfs_rq ;   189     struct task_group ;   495     struct sighand_struct {   atomic_t count;   struct k_sigaction action[64U];   spinlock_t siglock;   wait_queue_head_t signalfd_wqh; } ;   539     struct pacct_struct {   int ac_flag;   long ac_exitcode;   unsigned long ac_mem;   cputime_t ac_utime;   cputime_t ac_stime;   unsigned long ac_minflt;   unsigned long ac_majflt; } ;   547     struct cpu_itimer {   cputime_t expires;   cputime_t incr;   u32 error;   u32 incr_error; } ;   554     struct prev_cputime {   cputime_t utime;   cputime_t stime;   raw_spinlock_t lock; } ;   579     struct task_cputime {   cputime_t utime;   cputime_t stime;   unsigned long long sum_exec_runtime; } ;   595     struct task_cputime_atomic {   atomic64_t utime;   atomic64_t stime;   atomic64_t sum_exec_runtime; } ;   617     struct thread_group_cputimer {   struct task_cputime_atomic cputime_atomic;   bool running;   bool checking_timer; } ;   662     struct autogroup ;   663     struct tty_struct ;   663     struct taskstats ;   663     struct tty_audit_buf ;   663     struct signal_struct {   atomic_t sigcnt;   atomic_t live;   int nr_threads;   struct list_head thread_head;   wait_queue_head_t wait_chldexit;   struct task_struct *curr_target;   struct sigpending shared_pending;   int group_exit_code;   int notify_count;   struct task_struct *group_exit_task;   int group_stop_count;   unsigned int flags;   unsigned char is_child_subreaper;   unsigned char has_child_subreaper;   int posix_timer_id;   struct list_head posix_timers;   struct hrtimer real_timer;   struct pid *leader_pid;   ktime_t it_real_incr;   struct cpu_itimer it[2U];   struct thread_group_cputimer cputimer;   struct task_cputime cputime_expires;   struct list_head cpu_timers[3U];   struct pid *tty_old_pgrp;   int leader;   struct tty_struct *tty;   struct autogroup *autogroup;   seqlock_t stats_lock;   cputime_t utime;   cputime_t stime;   cputime_t cutime;   cputime_t cstime;   cputime_t gtime;   cputime_t cgtime;   struct prev_cputime prev_cputime;   unsigned long nvcsw;   unsigned long nivcsw;   unsigned long cnvcsw;   unsigned long cnivcsw;   unsigned long min_flt;   unsigned long maj_flt;   unsigned long cmin_flt;   unsigned long cmaj_flt;   unsigned long inblock;   unsigned long oublock;   unsigned long cinblock;   unsigned long coublock;   unsigned long maxrss;   unsigned long cmaxrss;   struct task_io_accounting ioac;   unsigned long long sum_sched_runtime;   struct rlimit rlim[16U];   struct pacct_struct pacct;   struct taskstats *stats;   unsigned int audit_tty;   struct tty_audit_buf *tty_audit_buf;   bool oom_flag_origin;   short oom_score_adj;   short oom_score_adj_min;   struct mm_struct *oom_mm;   struct mutex cred_guard_mutex; } ;   839     struct user_struct {   atomic_t __count;   atomic_t processes;   atomic_t sigpending;   atomic_t inotify_watches;   atomic_t inotify_devs;   atomic_t fanotify_listeners;   atomic_long_t epoll_watches;   unsigned long mq_bytes;   unsigned long locked_shm;   unsigned long unix_inflight;   atomic_long_t pipe_bufs;   struct key *uid_keyring;   struct key *session_keyring;   struct hlist_node uidhash_node;   kuid_t uid;   atomic_long_t locked_vm; } ;   884     struct reclaim_state ;   885     struct sched_info {   unsigned long pcount;   unsigned long long run_delay;   unsigned long long last_arrival;   unsigned long long last_queued; } ;   900     struct task_delay_info {   spinlock_t lock;   unsigned int flags;   u64 blkio_start;   u64 blkio_delay;   u64 swapin_delay;   u32 blkio_count;   u32 swapin_count;   u64 freepages_start;   u64 freepages_delay;   u32 freepages_count; } ;   957     struct wake_q_node {   struct wake_q_node *next; } ;  1235     struct load_weight {   unsigned long weight;   u32 inv_weight; } ;  1243     struct sched_avg {   u64 last_update_time;   u64 load_sum;   u32 util_sum;   u32 period_contrib;   unsigned long load_avg;   unsigned long util_avg; } ;  1301     struct sched_statistics {   u64 wait_start;   u64 wait_max;   u64 wait_count;   u64 wait_sum;   u64 iowait_count;   u64 iowait_sum;   u64 sleep_start;   u64 sleep_max;   s64 sum_sleep_runtime;   u64 block_start;   u64 block_max;   u64 exec_max;   u64 slice_max;   u64 nr_migrations_cold;   u64 nr_failed_migrations_affine;   u64 nr_failed_migrations_running;   u64 nr_failed_migrations_hot;   u64 nr_forced_migrations;   u64 nr_wakeups;   u64 nr_wakeups_sync;   u64 nr_wakeups_migrate;   u64 nr_wakeups_local;   u64 nr_wakeups_remote;   u64 nr_wakeups_affine;   u64 nr_wakeups_affine_attempts;   u64 nr_wakeups_passive;   u64 nr_wakeups_idle; } ;  1336     struct sched_entity {   struct load_weight load;   struct rb_node run_node;   struct list_head group_node;   unsigned int on_rq;   u64 exec_start;   u64 sum_exec_runtime;   u64 vruntime;   u64 prev_sum_exec_runtime;   u64 nr_migrations;   struct sched_statistics statistics;   int depth;   struct sched_entity *parent;   struct cfs_rq *cfs_rq;   struct cfs_rq *my_q;   struct sched_avg avg; } ;  1373     struct rt_rq ;  1373     struct sched_rt_entity {   struct list_head run_list;   unsigned long timeout;   unsigned long watchdog_stamp;   unsigned int time_slice;   unsigned short on_rq;   unsigned short on_list;   struct sched_rt_entity *back;   struct sched_rt_entity *parent;   struct rt_rq *rt_rq;   struct rt_rq *my_q; } ;  1391     struct sched_dl_entity {   struct rb_node rb_node;   u64 dl_runtime;   u64 dl_deadline;   u64 dl_period;   u64 dl_bw;   s64 runtime;   u64 deadline;   unsigned int flags;   int dl_throttled;   int dl_boosted;   int dl_yielded;   struct hrtimer dl_timer; } ;  1455     struct tlbflush_unmap_batch {   struct cpumask cpumask;   bool flush_required;   bool writable; } ;  1474     struct sched_class ;  1474     struct compat_robust_list_head ;  1474     struct numa_group ;  1474     struct kcov ;  1474     struct task_struct {   struct thread_info thread_info;   volatile long state;   void *stack;   atomic_t usage;   unsigned int flags;   unsigned int ptrace;   struct llist_node wake_entry;   int on_cpu;   unsigned int cpu;   unsigned int wakee_flips;   unsigned long wakee_flip_decay_ts;   struct task_struct *last_wakee;   int wake_cpu;   int on_rq;   int prio;   int static_prio;   int normal_prio;   unsigned int rt_priority;   const struct sched_class *sched_class;   struct sched_entity se;   struct sched_rt_entity rt;   struct task_group *sched_task_group;   struct sched_dl_entity dl;   struct hlist_head preempt_notifiers;   unsigned int policy;   int nr_cpus_allowed;   cpumask_t cpus_allowed;   unsigned long rcu_tasks_nvcsw;   bool rcu_tasks_holdout;   struct list_head rcu_tasks_holdout_list;   int rcu_tasks_idle_cpu;   struct sched_info sched_info;   struct list_head tasks;   struct plist_node pushable_tasks;   struct rb_node pushable_dl_tasks;   struct mm_struct *mm;   struct mm_struct *active_mm;   u32 vmacache_seqnum;   struct vm_area_struct *vmacache[4U];   struct task_rss_stat rss_stat;   int exit_state;   int exit_code;   int exit_signal;   int pdeath_signal;   unsigned long jobctl;   unsigned int personality;   unsigned char sched_reset_on_fork;   unsigned char sched_contributes_to_load;   unsigned char sched_migrated;   unsigned char sched_remote_wakeup;   unsigned char;   unsigned char in_execve;   unsigned char in_iowait;   unsigned char restore_sigmask;   unsigned char memcg_may_oom;   unsigned char memcg_kmem_skip_account;   unsigned char brk_randomized;   unsigned long atomic_flags;   struct restart_block restart_block;   pid_t pid;   pid_t tgid;   struct task_struct *real_parent;   struct task_struct *parent;   struct list_head children;   struct list_head sibling;   struct task_struct *group_leader;   struct list_head ptraced;   struct list_head ptrace_entry;   struct pid_link pids[3U];   struct list_head thread_group;   struct list_head thread_node;   struct completion *vfork_done;   int *set_child_tid;   int *clear_child_tid;   cputime_t utime;   cputime_t stime;   cputime_t utimescaled;   cputime_t stimescaled;   cputime_t gtime;   struct prev_cputime prev_cputime;   unsigned long nvcsw;   unsigned long nivcsw;   u64 start_time;   u64 real_start_time;   unsigned long min_flt;   unsigned long maj_flt;   struct task_cputime cputime_expires;   struct list_head cpu_timers[3U];   const struct cred *real_cred;   const struct cred *cred;   char comm[16U];   struct nameidata *nameidata;   struct sysv_sem sysvsem;   struct sysv_shm sysvshm;   unsigned long last_switch_count;   struct fs_struct *fs;   struct files_struct *files;   struct nsproxy *nsproxy;   struct signal_struct *signal;   struct sighand_struct *sighand;   sigset_t blocked;   sigset_t real_blocked;   sigset_t saved_sigmask;   struct sigpending pending;   unsigned long sas_ss_sp;   size_t sas_ss_size;   unsigned int sas_ss_flags;   struct callback_head *task_works;   struct audit_context *audit_context;   kuid_t loginuid;   unsigned int sessionid;   struct seccomp seccomp;   u32 parent_exec_id;   u32 self_exec_id;   spinlock_t alloc_lock;   raw_spinlock_t pi_lock;   struct wake_q_node wake_q;   struct rb_root pi_waiters;   struct rb_node *pi_waiters_leftmost;   struct rt_mutex_waiter *pi_blocked_on;   struct mutex_waiter *blocked_on;   unsigned int irq_events;   unsigned long hardirq_enable_ip;   unsigned long hardirq_disable_ip;   unsigned int hardirq_enable_event;   unsigned int hardirq_disable_event;   int hardirqs_enabled;   int hardirq_context;   unsigned long softirq_disable_ip;   unsigned long softirq_enable_ip;   unsigned int softirq_disable_event;   unsigned int softirq_enable_event;   int softirqs_enabled;   int softirq_context;   u64 curr_chain_key;   int lockdep_depth;   unsigned int lockdep_recursion;   struct held_lock held_locks[48U];   gfp_t lockdep_reclaim_gfp;   unsigned int in_ubsan;   void *journal_info;   struct bio_list *bio_list;   struct blk_plug *plug;   struct reclaim_state *reclaim_state;   struct backing_dev_info *backing_dev_info;   struct io_context *io_context;   unsigned long ptrace_message;   siginfo_t *last_siginfo;   struct task_io_accounting ioac;   u64 acct_rss_mem1;   u64 acct_vm_mem1;   cputime_t acct_timexpd;   nodemask_t mems_allowed;   seqcount_t mems_allowed_seq;   int cpuset_mem_spread_rotor;   int cpuset_slab_spread_rotor;   struct css_set *cgroups;   struct list_head cg_list;   struct robust_list_head *robust_list;   struct compat_robust_list_head *compat_robust_list;   struct list_head pi_state_list;   struct futex_pi_state *pi_state_cache;   struct perf_event_context *perf_event_ctxp[2U];   struct mutex perf_event_mutex;   struct list_head perf_event_list;   struct mempolicy *mempolicy;   short il_next;   short pref_node_fork;   int numa_scan_seq;   unsigned int numa_scan_period;   unsigned int numa_scan_period_max;   int numa_preferred_nid;   unsigned long numa_migrate_retry;   u64 node_stamp;   u64 last_task_numa_placement;   u64 last_sum_exec_runtime;   struct callback_head numa_work;   struct list_head numa_entry;   struct numa_group *numa_group;   unsigned long *numa_faults;   unsigned long total_numa_faults;   unsigned long numa_faults_locality[3U];   unsigned long numa_pages_migrated;   struct tlbflush_unmap_batch tlb_ubc;   struct callback_head rcu;   struct pipe_inode_info *splice_pipe;   struct page_frag task_frag;   struct task_delay_info *delays;   int make_it_fail;   int nr_dirtied;   int nr_dirtied_pause;   unsigned long dirty_paused_when;   int latency_record_count;   struct latency_record latency_record[32U];   u64 timer_slack_ns;   u64 default_timer_slack_ns;   unsigned int kasan_depth;   unsigned long trace;   unsigned long trace_recursion;   enum kcov_mode kcov_mode;   unsigned int kcov_size;   void *kcov_area;   struct kcov *kcov;   struct mem_cgroup *memcg_in_oom;   gfp_t memcg_oom_gfp_mask;   int memcg_oom_order;   unsigned int memcg_nr_pages_over_high;   struct uprobe_task *utask;   unsigned int sequential_io;   unsigned int sequential_io_avg;   unsigned long task_state_change;   int pagefault_disabled;   struct task_struct *oom_reaper_list;   atomic_t stack_refcount;   struct thread_struct thread; } ;    76     struct dma_map_ops ;    76     struct dev_archdata {   struct dma_map_ops *dma_ops;   void *iommu; } ;    21     struct pdev_archdata { } ;    24     struct device_private ;    25     struct device_driver ;    26     struct driver_private ;    27     struct class ;    28     struct subsys_private ;    29     struct bus_type ;    30     struct device_node ;    31     struct fwnode_handle ;    32     struct iommu_ops ;    33     struct iommu_group ;    34     struct iommu_fwspec ;    62     struct device_attribute ;    62     struct bus_type {   const char *name;   const char *dev_name;   struct device *dev_root;   struct device_attribute *dev_attrs;   const struct attribute_group **bus_groups;   const struct attribute_group **dev_groups;   const struct attribute_group **drv_groups;   int (*match)(struct device *, struct device_driver *);   int (*uevent)(struct device *, struct kobj_uevent_env *);   int (*probe)(struct device *);   int (*remove)(struct device *);   void (*shutdown)(struct device *);   int (*online)(struct device *);   int (*offline)(struct device *);   int (*suspend)(struct device *, pm_message_t );   int (*resume)(struct device *);   const struct dev_pm_ops *pm;   const struct iommu_ops *iommu_ops;   struct subsys_private *p;   struct lock_class_key lock_key; } ;   143     struct device_type ;   202     enum probe_type {   PROBE_DEFAULT_STRATEGY = 0,   PROBE_PREFER_ASYNCHRONOUS = 1,   PROBE_FORCE_SYNCHRONOUS = 2 } ;   208     struct of_device_id ;   208     struct acpi_device_id ;   208     struct device_driver {   const char *name;   struct bus_type *bus;   struct module *owner;   const char *mod_name;   bool suppress_bind_attrs;   enum probe_type probe_type;   const struct of_device_id *of_match_table;   const struct acpi_device_id *acpi_match_table;   int (*probe)(struct device *);   int (*remove)(struct device *);   void (*shutdown)(struct device *);   int (*suspend)(struct device *, pm_message_t );   int (*resume)(struct device *);   const struct attribute_group **groups;   const struct dev_pm_ops *pm;   struct driver_private *p; } ;   358     struct class_attribute ;   358     struct class {   const char *name;   struct module *owner;   struct class_attribute *class_attrs;   const struct attribute_group **dev_groups;   struct kobject *dev_kobj;   int (*dev_uevent)(struct device *, struct kobj_uevent_env *);   char * (*devnode)(struct device *, umode_t *);   void (*class_release)(struct class *);   void (*dev_release)(struct device *);   int (*suspend)(struct device *, pm_message_t );   int (*resume)(struct device *);   const struct kobj_ns_type_operations *ns_type;   const void * (*namespace)(struct device *);   const struct dev_pm_ops *pm;   struct subsys_private *p; } ;   451     struct class_attribute {   struct attribute attr;   ssize_t  (*show)(struct class *, struct class_attribute *, char *);   ssize_t  (*store)(struct class *, struct class_attribute *, const char *, size_t ); } ;   519     struct device_type {   const char *name;   const struct attribute_group **groups;   int (*uevent)(struct device *, struct kobj_uevent_env *);   char * (*devnode)(struct device *, umode_t *, kuid_t *, kgid_t *);   void (*release)(struct device *);   const struct dev_pm_ops *pm; } ;   547     struct device_attribute {   struct attribute attr;   ssize_t  (*show)(struct device *, struct device_attribute *, char *);   ssize_t  (*store)(struct device *, struct device_attribute *, const char *, size_t ); } ;   700     struct device_dma_parameters {   unsigned int max_segment_size;   unsigned long segment_boundary_mask; } ;   709     struct irq_domain ;   709     struct dma_coherent_mem ;   709     struct cma ;   709     struct device {   struct device *parent;   struct device_private *p;   struct kobject kobj;   const char *init_name;   const struct device_type *type;   struct mutex mutex;   struct bus_type *bus;   struct device_driver *driver;   void *platform_data;   void *driver_data;   struct dev_pm_info power;   struct dev_pm_domain *pm_domain;   struct irq_domain *msi_domain;   struct dev_pin_info *pins;   struct list_head msi_list;   int numa_node;   u64 *dma_mask;   u64 coherent_dma_mask;   unsigned long dma_pfn_offset;   struct device_dma_parameters *dma_parms;   struct list_head dma_pools;   struct dma_coherent_mem *dma_mem;   struct cma *cma_area;   struct dev_archdata archdata;   struct device_node *of_node;   struct fwnode_handle *fwnode;   dev_t devt;   u32 id;   spinlock_t devres_lock;   struct list_head devres_head;   struct klist_node knode_class;   struct class *class;   const struct attribute_group **groups;   void (*release)(struct device *);   struct iommu_group *iommu_group;   struct iommu_fwspec *iommu_fwspec;   bool offline_disabled;   bool offline; } ;   865     struct wakeup_source {   const char *name;   struct list_head entry;   spinlock_t lock;   struct wake_irq *wakeirq;   struct timer_list timer;   unsigned long timer_expires;   ktime_t total_time;   ktime_t max_time;   ktime_t last_time;   ktime_t start_prevent_time;   ktime_t prevent_sleep_time;   unsigned long event_count;   unsigned long active_count;   unsigned long relax_count;   unsigned long expire_count;   unsigned long wakeup_count;   bool active;   bool autosleep_enabled; } ;    13     typedef unsigned long kernel_ulong_t;   186     struct acpi_device_id {   __u8 id[9U];   kernel_ulong_t driver_data;   __u32 cls;   __u32 cls_msk; } ;   229     struct of_device_id {   char name[32U];   char type[32U];   char compatible[128U];   const void *data; } ;   484     struct platform_device_id {   char name[20U];   kernel_ulong_t driver_data; } ;   674     struct mfd_cell ;   676     struct platform_device {   const char *name;   int id;   bool id_auto;   struct device dev;   u32 num_resources;   struct resource *resource;   const struct platform_device_id *id_entry;   char *driver_override;   struct mfd_cell *mfd_cell;   struct pdev_archdata archdata; } ;   352     enum irqreturn {   IRQ_NONE = 0,   IRQ_HANDLED = 1,   IRQ_WAKE_THREAD = 2 } ;    16     typedef enum irqreturn irqreturn_t;   130     struct exception_table_entry {   int insn;   int fixup;   int handler; } ;   716     struct uio_map ;   717     struct uio_mem {   const char *name;   phys_addr_t addr;   resource_size_t size;   int memtype;   void *internal_addr;   struct uio_map *map; } ;    43     struct uio_portio ;    44     struct uio_port {   const char *name;   unsigned long start;   unsigned long size;   int porttype;   struct uio_portio *portio; } ;    63     struct uio_info ;    63     struct uio_device {   struct module *owner;   struct device *dev;   int minor;   atomic_t event;   struct fasync_struct *async_queue;   wait_queue_head_t wait;   struct uio_info *info;   struct kobject *map_dir;   struct kobject *portio_dir; } ;    77     struct uio_info {   struct uio_device *uio_dev;   const char *name;   const char *version;   struct uio_mem mem[5U];   struct uio_port port[5U];   long irq;   unsigned long irq_flags;   void *priv;   irqreturn_t  (*handler)(int, struct uio_info *);   int (*mmap)(struct uio_info *, struct vm_area_struct *);   int (*open)(struct uio_info *, struct inode *);   int (*release)(struct uio_info *, struct inode *);   int (*irqcontrol)(struct uio_info *, s32 ); } ;   121     struct gen_pool ;   121     struct uio_pruss_pdata {   u32 pintc_base;   struct gen_pool *sram_pool; } ;   511     struct scatterlist ;    96     enum dma_data_direction {   DMA_BIDIRECTIONAL = 0,   DMA_TO_DEVICE = 1,   DMA_FROM_DEVICE = 2,   DMA_NONE = 3 } ;   273     struct vm_fault {   unsigned int flags;   gfp_t gfp_mask;   unsigned long pgoff;   void *virtual_address;   struct page *cow_page;   struct page *page;   void *entry; } ;   308     struct fault_env {   struct vm_area_struct *vma;   unsigned long address;   unsigned int flags;   pmd_t *pmd;   pte_t *pte;   spinlock_t *ptl;   pgtable_t prealloc_pte; } ;   335     struct vm_operations_struct {   void (*open)(struct vm_area_struct *);   void (*close)(struct vm_area_struct *);   int (*mremap)(struct vm_area_struct *);   int (*fault)(struct vm_area_struct *, struct vm_fault *);   int (*pmd_fault)(struct vm_area_struct *, unsigned long, pmd_t *, unsigned int);   void (*map_pages)(struct fault_env *, unsigned long, unsigned long);   int (*page_mkwrite)(struct vm_area_struct *, struct vm_fault *);   int (*pfn_mkwrite)(struct vm_area_struct *, struct vm_fault *);   int (*access)(struct vm_area_struct *, unsigned long, void *, int, int);   const char * (*name)(struct vm_area_struct *);   int (*set_policy)(struct vm_area_struct *, struct mempolicy *);   struct mempolicy * (*get_policy)(struct vm_area_struct *, unsigned long);   struct page * (*find_special_page)(struct vm_area_struct *, unsigned long); } ;  2450     struct scatterlist {   unsigned long sg_magic;   unsigned long page_link;   unsigned int offset;   unsigned int length;   dma_addr_t dma_address;   unsigned int dma_length; } ;    21     struct sg_table {   struct scatterlist *sgl;   unsigned int nents;   unsigned int orig_nents; } ;   158     struct dma_map_ops {   void * (*alloc)(struct device *, size_t , dma_addr_t *, gfp_t , unsigned long);   void (*free)(struct device *, size_t , void *, dma_addr_t , unsigned long);   int (*mmap)(struct device *, struct vm_area_struct *, void *, dma_addr_t , size_t , unsigned long);   int (*get_sgtable)(struct device *, struct sg_table *, void *, dma_addr_t , size_t , unsigned long);   dma_addr_t  (*map_page)(struct device *, struct page *, unsigned long, size_t , enum dma_data_direction , unsigned long);   void (*unmap_page)(struct device *, dma_addr_t , size_t , enum dma_data_direction , unsigned long);   int (*map_sg)(struct device *, struct scatterlist *, int, enum dma_data_direction , unsigned long);   void (*unmap_sg)(struct device *, struct scatterlist *, int, enum dma_data_direction , unsigned long);   dma_addr_t  (*map_resource)(struct device *, phys_addr_t , size_t , enum dma_data_direction , unsigned long);   void (*unmap_resource)(struct device *, dma_addr_t , size_t , enum dma_data_direction , unsigned long);   void (*sync_single_for_cpu)(struct device *, dma_addr_t , size_t , enum dma_data_direction );   void (*sync_single_for_device)(struct device *, dma_addr_t , size_t , enum dma_data_direction );   void (*sync_sg_for_cpu)(struct device *, struct scatterlist *, int, enum dma_data_direction );   void (*sync_sg_for_device)(struct device *, struct scatterlist *, int, enum dma_data_direction );   int (*mapping_error)(struct device *, dma_addr_t );   int (*dma_supported)(struct device *, u64 );   int (*set_dma_mask)(struct device *, u64 );   int is_phys; } ;    49     struct gen_pool {   spinlock_t lock;   struct list_head chunks;   int min_alloc_order;   unsigned long int (*algo)(unsigned long *, unsigned long, unsigned long, unsigned int, void *, struct gen_pool *);   void *data;   const char *name; } ;    42     struct uio_pruss_dev {   struct uio_info *info;   struct clk *pruss_clk;   dma_addr_t sram_paddr;   dma_addr_t ddr_paddr;   void *prussio_vaddr;   unsigned long sram_vaddr;   void *ddr_vaddr;   unsigned int hostirq_start;   unsigned int pintc_base;   struct gen_pool *sram_pool; } ;     1     long int __builtin_expect(long, long);    34     extern struct module __this_module;   419     char * kasprintf(gfp_t , const char *, ...);     3     bool  ldv_is_err(const void *ptr);     6     long int ldv_ptr_err(const void *ptr);    32     long int PTR_ERR(const void *ptr);    41     bool  IS_ERR(const void *ptr);   193     resource_size_t  resource_size(const struct resource *res);   181     void * ioremap_nocache(resource_size_t , unsigned long);   192     void * ioremap(resource_size_t offset, unsigned long size);   197     void iounmap(volatile void *);    31     unsigned int ioread32(void *);    41     void iowrite32(u32 , void *);    11     void ldv_clk_disable_clk(struct clk *clk);    12     int ldv_clk_enable_clk();    14     int ldv_clk_enable_pruss_clk_of_uio_pruss_dev();   915     void * dev_get_drvdata(const struct device *dev);   920     void dev_set_drvdata(struct device *dev, void *data);  1049     void * dev_get_platdata(const struct device *dev);  1138     void dev_err(const struct device *, const char *, ...);    52     struct resource * platform_get_resource(struct platform_device *, unsigned int, unsigned int);    54     int platform_get_irq(struct platform_device *, unsigned int);   211     void * platform_get_drvdata(const struct platform_device *pdev);   216     void platform_set_drvdata(struct platform_device *pdev, void *data);   111     int __uio_register_device(struct module *, struct device *, struct uio_info *);   119     void uio_unregister_device(struct uio_info *);   229     struct clk * clk_get(struct device *, const char *);   264     int ldv_clk_enable_5(struct clk *clk);   268     int ldv_clk_enable_7(struct clk *clk);   280     void ldv_clk_disable_6(struct clk *clk);   296     void clk_put(struct clk *);    53     void debug_dma_alloc_coherent(struct device *, size_t , dma_addr_t , void *);    28     extern struct dma_map_ops *dma_ops;    30     struct dma_map_ops * get_dma_ops(struct device *dev);    42     bool  arch_dma_alloc_attrs(struct device **, gfp_t *);   450     void * dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag, unsigned long attrs);   491     void * dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag);   497     void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t dma_handle);   154     void kfree(const void *);   330     void * __kmalloc(size_t , gfp_t );   478     void * kmalloc(size_t size, gfp_t flags);   634     void * kzalloc(size_t size, gfp_t flags);   119     void * gen_pool_dma_alloc(struct gen_pool *, size_t , dma_addr_t *);   121     void gen_pool_free(struct gen_pool *, unsigned long, size_t );    35     int sram_pool_sz = 16384;    39     int extram_pool_sz = 262144;    77     irqreturn_t  pruss_handler(int irq, struct uio_info *info);    96     void pruss_cleanup(struct device *dev, struct uio_pruss_dev *gdev);   119     int pruss_probe(struct platform_device *pdev);   223     int pruss_remove(struct platform_device *dev);   262     void ldv_check_final_state();   265     void ldv_check_return_value(int);   268     void ldv_check_return_value_probe(int);   271     void ldv_initialize();   274     void ldv_handler_precall();   277     int nondet_int();   280     int LDV_IN_INTERRUPT = 0;   283     void ldv_main0_sequence_infinite_withcheck_stateful();    10     void ldv_error();    25     int ldv_undef_int();    14     void * ldv_err_ptr(long error);    28     bool  ldv_is_err_or_null(const void *ptr);     9     int ldv_counter_clk = 0;    32     int ldv_counter_pruss_clk_of_uio_pruss_dev = 0;    35     void ldv_clk_disable_pruss_clk_of_uio_pruss_dev(struct clk *clk);           return ;}         {   285     struct platform_device *var_group1;   286     int res_pruss_probe_2;   287     int ldv_s_pruss_driver_platform_driver;   288     int tmp;   289     int tmp___0;   331     ldv_s_pruss_driver_platform_driver = 0;   321     LDV_IN_INTERRUPT = 1;   330     ldv_initialize() { /* Function call is skipped due to function is undefined */}   334     goto ldv_33505;   334     tmp___0 = nondet_int() { /* Function call is skipped due to function is undefined */}   337     goto ldv_33504;   335     ldv_33504:;   338     tmp = nondet_int() { /* Function call is skipped due to function is undefined */}   338     switch (tmp);           {   121       struct uio_info *p;   122       struct uio_pruss_dev *gdev;   123       struct resource *regs_prussio;   124       struct device *dev;   125       int ret;   126       int cnt;   127       int len;   128       struct uio_pruss_pdata *pdata;   129       void *tmp;   130       void *tmp___0;   131       void *tmp___1;   132       long tmp___2;   133       _Bool tmp___3;   134       void *tmp___4;   135       unsigned long long tmp___5;   136       int tmp___6;   137       char *tmp___7;   124       dev = &(pdev->dev);   125       ret = -19;   125       cnt = 0;             {  1051         void *__CPAchecker_TMP_0 = (void *)(dev->platform_data);  1051         return __CPAchecker_TMP_0;;}   126       pdata = (struct uio_pruss_pdata *)tmp;             {   636         void *tmp;               {   480           void *tmp___2;   495           tmp___2 = __kmalloc(size, flags) { /* Function call is skipped due to function is undefined */}   495           return tmp___2;;}   636         return tmp;;}   128       gdev = (struct uio_pruss_dev *)tmp___0;             {   636         void *tmp;               {   480           void *tmp___2;   495           tmp___2 = __kmalloc(size, flags) { /* Function call is skipped due to function is undefined */}   495           return tmp___2;;}   636         return tmp;;}   132       gdev->info = (struct uio_info *)tmp___1;   133       unsigned long __CPAchecker_TMP_0 = (unsigned long)(gdev->info);   139       gdev->pruss_clk = clk_get(dev, "pruss") { /* Function call is skipped due to function is undefined */}   140       const void *__CPAchecker_TMP_1 = (const void *)(gdev->pruss_clk);             {    54         int tmp;               {}    44           int retval;    45           int tmp;    44           tmp = ldv_undef_int() { /* Function call is skipped due to function is undefined */}    44           retval = tmp;    48           ldv_counter_pruss_clk_of_uio_pruss_dev = 1;}   150       regs_prussio = platform_get_resource(pdev, 512U, 0U) { /* Function call is skipped due to function is undefined */}   161       unsigned long __CPAchecker_TMP_4 = (unsigned long)(pdata->sram_pool);   162       gdev->sram_pool = pdata->sram_pool;   163       tmp___4 = gen_pool_dma_alloc(gdev->sram_pool, (size_t )sram_pool_sz, &(gdev->sram_paddr)) { /* Function call is skipped due to function is undefined */}   163       gdev->sram_vaddr = (unsigned long)tmp___4;             {   494         void *tmp;               {   453           struct dma_map_ops *ops;   454           struct dma_map_ops *tmp;   455           void *cpu_addr;   456           long tmp___0;   457           _Bool tmp___1;   458           int tmp___2;                 {    32             long tmp;    35             tmp = __builtin_expect(((unsigned long)dev) == ((unsigned long)((struct device *)0)), 0L) { /* Function call is skipped due to function is undefined */}    35             assume(tmp != 0L);    36             return dma_ops;;}   454           ops = tmp;   457           tmp___0 = __builtin_expect(((unsigned long)ops) == ((unsigned long)((struct dma_map_ops *)0)), 0L) { /* Function call is skipped due to function is undefined */}   457           assume(!(tmp___0 != 0L));   462           tmp___1 = arch_dma_alloc_attrs(&dev, &flag) { /* Function call is skipped due to function is undefined */}   462           assume(!(tmp___1 == 0));   462           tmp___2 = 0;   462           assume(tmp___2 == 0);   464           unsigned long __CPAchecker_TMP_0 = (unsigned long)(ops->alloc);   464           assume(!(__CPAchecker_TMP_0 == ((unsigned long)((void * (*)(struct device *, size_t , dma_addr_t *, gfp_t , unsigned long))0))));   467           cpu_addr = (*(ops->alloc))(dev, size, dma_handle, flag, attrs);   468           debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr) { /* Function call is skipped due to function is undefined */}   469           return cpu_addr;;}   494         return tmp;;}   174       unsigned long __CPAchecker_TMP_5 = (unsigned long)(gdev->ddr_vaddr);             {   195         unsigned long long __CPAchecker_TMP_0 = (unsigned long long)(res->end);   195         unsigned long long __CPAchecker_TMP_1 = (unsigned long long)(res->start);   195         return (__CPAchecker_TMP_0 - __CPAchecker_TMP_1) + 1ULL;;}   179       len = (int)tmp___5;             {   194         void *tmp;   194         tmp = ioremap_nocache(offset, size) { /* Function call is skipped due to function is undefined */}   194         return tmp;;}   181       unsigned long __CPAchecker_TMP_6 = (unsigned long)(gdev->prussio_vaddr);   186       gdev->pintc_base = pdata->pintc_base;   187       tmp___6 = platform_get_irq(pdev, 0U) { /* Function call is skipped due to function is undefined */}   187       gdev->hostirq_start = (unsigned int)tmp___6;   189       cnt = 0;   189       p = gdev->info;   189       goto ldv_33453;   191       goto ldv_33452;   190       ldv_33452:;   190       ((p->mem)[0]).addr = regs_prussio->start;             {   195         unsigned long long __CPAchecker_TMP_0 = (unsigned long long)(res->end);   195         unsigned long long __CPAchecker_TMP_1 = (unsigned long long)(res->start);   195         return (__CPAchecker_TMP_0 - __CPAchecker_TMP_1) + 1ULL;;}   192       ((p->mem)[0]).memtype = 1;   194       ((p->mem)[1]).addr = gdev->sram_paddr;   195       ((p->mem)[1]).size = (resource_size_t )sram_pool_sz;   196       ((p->mem)[1]).memtype = 1;   198       ((p->mem)[2]).addr = gdev->ddr_paddr;   199       ((p->mem)[2]).size = (resource_size_t )extram_pool_sz;   200       ((p->mem)[2]).memtype = 1;   202       tmp___7 = kasprintf(37748928U, "pruss_evt%d", cnt) { /* Function call is skipped due to function is undefined */}   202       p->name = (const char *)tmp___7;   203       p->version = "1.0";   206       p->irq = (long)((gdev->hostirq_start) + ((unsigned int)cnt));   207       p->handler = &pruss_handler;   208       p->priv = (void *)gdev;   210       ret = __uio_register_device(&__this_module, dev, p) { /* Function call is skipped due to function is undefined */}   189       cnt = cnt + 1;   189       p = p + 1;   190       ldv_33453:;   191       goto ldv_33452;   190       ldv_33452:;   190       ((p->mem)[0]).addr = regs_prussio->start;             {   195         unsigned long long __CPAchecker_TMP_0 = (unsigned long long)(res->end);   195         unsigned long long __CPAchecker_TMP_1 = (unsigned long long)(res->start);   195         return (__CPAchecker_TMP_0 - __CPAchecker_TMP_1) + 1ULL;;}   192       ((p->mem)[0]).memtype = 1;   194       ((p->mem)[1]).addr = gdev->sram_paddr;   195       ((p->mem)[1]).size = (resource_size_t )sram_pool_sz;   196       ((p->mem)[1]).memtype = 1;   198       ((p->mem)[2]).addr = gdev->ddr_paddr;   199       ((p->mem)[2]).size = (resource_size_t )extram_pool_sz;   200       ((p->mem)[2]).memtype = 1;   202       tmp___7 = kasprintf(37748928U, "pruss_evt%d", cnt) { /* Function call is skipped due to function is undefined */}   202       p->name = (const char *)tmp___7;   203       p->version = "1.0";   206       p->irq = (long)((gdev->hostirq_start) + ((unsigned int)cnt));   207       p->handler = &pruss_handler;   208       p->priv = (void *)gdev;   210       ret = __uio_register_device(&__this_module, dev, p) { /* Function call is skipped due to function is undefined */}   189       cnt = cnt + 1;   189       p = p + 1;   190       ldv_33453:;   191       goto ldv_33452;   190       ldv_33452:;   190       ((p->mem)[0]).addr = regs_prussio->start;             {   195         unsigned long long __CPAchecker_TMP_0 = (unsigned long long)(res->end);   195         unsigned long long __CPAchecker_TMP_1 = (unsigned long long)(res->start);   195         return (__CPAchecker_TMP_0 - __CPAchecker_TMP_1) + 1ULL;;}   192       ((p->mem)[0]).memtype = 1;   194       ((p->mem)[1]).addr = gdev->sram_paddr;   195       ((p->mem)[1]).size = (resource_size_t )sram_pool_sz;   196       ((p->mem)[1]).memtype = 1;   198       ((p->mem)[2]).addr = gdev->ddr_paddr;   199       ((p->mem)[2]).size = (resource_size_t )extram_pool_sz;   200       ((p->mem)[2]).memtype = 1;   202       tmp___7 = kasprintf(37748928U, "pruss_evt%d", cnt) { /* Function call is skipped due to function is undefined */}   202       p->name = (const char *)tmp___7;   203       p->version = "1.0";   206       p->irq = (long)((gdev->hostirq_start) + ((unsigned int)cnt));   207       p->handler = &pruss_handler;   208       p->priv = (void *)gdev;   210       ret = __uio_register_device(&__this_module, dev, p) { /* Function call is skipped due to function is undefined */}   189       cnt = cnt + 1;   189       p = p + 1;   190       ldv_33453:;   191       goto ldv_33452;   190       ldv_33452:;   190       ((p->mem)[0]).addr = regs_prussio->start;             {   195         unsigned long long __CPAchecker_TMP_0 = (unsigned long long)(res->end);   195         unsigned long long __CPAchecker_TMP_1 = (unsigned long long)(res->start);   195         return (__CPAchecker_TMP_0 - __CPAchecker_TMP_1) + 1ULL;;}   192       ((p->mem)[0]).memtype = 1;   194       ((p->mem)[1]).addr = gdev->sram_paddr;   195       ((p->mem)[1]).size = (resource_size_t )sram_pool_sz;   196       ((p->mem)[1]).memtype = 1;   198       ((p->mem)[2]).addr = gdev->ddr_paddr;   199       ((p->mem)[2]).size = (resource_size_t )extram_pool_sz;   200       ((p->mem)[2]).memtype = 1;   202       tmp___7 = kasprintf(37748928U, "pruss_evt%d", cnt) { /* Function call is skipped due to function is undefined */}   202       p->name = (const char *)tmp___7;   203       p->version = "1.0";   206       p->irq = (long)((gdev->hostirq_start) + ((unsigned int)cnt));   207       p->handler = &pruss_handler;   208       p->priv = (void *)gdev;   210       ret = __uio_register_device(&__this_module, dev, p) { /* Function call is skipped due to function is undefined */}   189       cnt = cnt + 1;   189       p = p + 1;   190       ldv_33453:;   191       goto ldv_33452;   190       ldv_33452:;   190       ((p->mem)[0]).addr = regs_prussio->start;             {   195         unsigned long long __CPAchecker_TMP_0 = (unsigned long long)(res->end);   195         unsigned long long __CPAchecker_TMP_1 = (unsigned long long)(res->start);   195         return (__CPAchecker_TMP_0 - __CPAchecker_TMP_1) + 1ULL;;}   192       ((p->mem)[0]).memtype = 1;   194       ((p->mem)[1]).addr = gdev->sram_paddr;   195       ((p->mem)[1]).size = (resource_size_t )sram_pool_sz;   196       ((p->mem)[1]).memtype = 1;   198       ((p->mem)[2]).addr = gdev->ddr_paddr;   199       ((p->mem)[2]).size = (resource_size_t )extram_pool_sz;   200       ((p->mem)[2]).memtype = 1;   202       tmp___7 = kasprintf(37748928U, "pruss_evt%d", cnt) { /* Function call is skipped due to function is undefined */}   202       p->name = (const char *)tmp___7;   203       p->version = "1.0";   206       p->irq = (long)((gdev->hostirq_start) + ((unsigned int)cnt));   207       p->handler = &pruss_handler;   208       p->priv = (void *)gdev;   210       ret = __uio_register_device(&__this_module, dev, p) { /* Function call is skipped due to function is undefined */}   189       cnt = cnt + 1;   189       p = p + 1;   190       ldv_33453:;   191       goto ldv_33452;   190       ldv_33452:;   190       ((p->mem)[0]).addr = regs_prussio->start;             {   195         unsigned long long __CPAchecker_TMP_0 = (unsigned long long)(res->end);   195         unsigned long long __CPAchecker_TMP_1 = (unsigned long long)(res->start);   195         return (__CPAchecker_TMP_0 - __CPAchecker_TMP_1) + 1ULL;;}   192       ((p->mem)[0]).memtype = 1;   194       ((p->mem)[1]).addr = gdev->sram_paddr;   195       ((p->mem)[1]).size = (resource_size_t )sram_pool_sz;   196       ((p->mem)[1]).memtype = 1;   198       ((p->mem)[2]).addr = gdev->ddr_paddr;   199       ((p->mem)[2]).size = (resource_size_t )extram_pool_sz;   200       ((p->mem)[2]).memtype = 1;   202       tmp___7 = kasprintf(37748928U, "pruss_evt%d", cnt) { /* Function call is skipped due to function is undefined */}   202       p->name = (const char *)tmp___7;   203       p->version = "1.0";   206       p->irq = (long)((gdev->hostirq_start) + ((unsigned int)cnt));   207       p->handler = &pruss_handler;   208       p->priv = (void *)gdev;   210       ret = __uio_register_device(&__this_module, dev, p) { /* Function call is skipped due to function is undefined */}   189       cnt = cnt + 1;   189       p = p + 1;   190       ldv_33453:;   191       goto ldv_33452;   190       ldv_33452:;   190       ((p->mem)[0]).addr = regs_prussio->start;             {   195         unsigned long long __CPAchecker_TMP_0 = (unsigned long long)(res->end);   195         unsigned long long __CPAchecker_TMP_1 = (unsigned long long)(res->start);   195         return (__CPAchecker_TMP_0 - __CPAchecker_TMP_1) + 1ULL;;}   192       ((p->mem)[0]).memtype = 1;   194       ((p->mem)[1]).addr = gdev->sram_paddr;   195       ((p->mem)[1]).size = (resource_size_t )sram_pool_sz;   196       ((p->mem)[1]).memtype = 1;   198       ((p->mem)[2]).addr = gdev->ddr_paddr;   199       ((p->mem)[2]).size = (resource_size_t )extram_pool_sz;   200       ((p->mem)[2]).memtype = 1;   202       tmp___7 = kasprintf(37748928U, "pruss_evt%d", cnt) { /* Function call is skipped due to function is undefined */}   202       p->name = (const char *)tmp___7;   203       p->version = "1.0";   206       p->irq = (long)((gdev->hostirq_start) + ((unsigned int)cnt));   207       p->handler = &pruss_handler;   208       p->priv = (void *)gdev;   210       ret = __uio_register_device(&__this_module, dev, p) { /* Function call is skipped due to function is undefined */}   189       cnt = cnt + 1;   189       p = p + 1;   190       ldv_33453:;   191       goto ldv_33452;   190       ldv_33452:;   190       ((p->mem)[0]).addr = regs_prussio->start;             {   195         unsigned long long __CPAchecker_TMP_0 = (unsigned long long)(res->end);   195         unsigned long long __CPAchecker_TMP_1 = (unsigned long long)(res->start);   195         return (__CPAchecker_TMP_0 - __CPAchecker_TMP_1) + 1ULL;;}   192       ((p->mem)[0]).memtype = 1;   194       ((p->mem)[1]).addr = gdev->sram_paddr;   195       ((p->mem)[1]).size = (resource_size_t )sram_pool_sz;   196       ((p->mem)[1]).memtype = 1;   198       ((p->mem)[2]).addr = gdev->ddr_paddr;   199       ((p->mem)[2]).size = (resource_size_t )extram_pool_sz;   200       ((p->mem)[2]).memtype = 1;   202       tmp___7 = kasprintf(37748928U, "pruss_evt%d", cnt) { /* Function call is skipped due to function is undefined */}   202       p->name = (const char *)tmp___7;   203       p->version = "1.0";   206       p->irq = (long)((gdev->hostirq_start) + ((unsigned int)cnt));   207       p->handler = &pruss_handler;   208       p->priv = (void *)gdev;   210       ret = __uio_register_device(&__this_module, dev, p) { /* Function call is skipped due to function is undefined */}   189       cnt = cnt + 1;   189       p = p + 1;   190       ldv_33453:;             {}               {   922           dev->driver_data = data;   923           return ;;}   220         return ;;}   357     ldv_check_return_value(res_pruss_probe_2) { /* Function call is skipped due to function is undefined */}   358     ldv_check_return_value_probe(res_pruss_probe_2) { /* Function call is skipped due to function is undefined */}   361     ldv_s_pruss_driver_platform_driver = ldv_s_pruss_driver_platform_driver + 1;   367     goto ldv_33501;   395     ldv_33501:;   396     ldv_33505:;   334     tmp___0 = nondet_int() { /* Function call is skipped due to function is undefined */}   337     goto ldv_33504;   335     ldv_33504:;   338     tmp = nondet_int() { /* Function call is skipped due to function is undefined */}   338     switch (tmp);   384     ldv_handler_precall() { /* Function call is skipped due to function is undefined */}           {   225       struct uio_pruss_dev *gdev;   226       void *tmp;             {   213         void *tmp;               {   917           void *__CPAchecker_TMP_0 = (void *)(dev->driver_data);   917           return __CPAchecker_TMP_0;;}   213         return tmp;;}   225       gdev = (struct uio_pruss_dev *)tmp;             {}    98         int cnt;    99         struct uio_info *p;    99         p = gdev->info;   101         cnt = 0;   101         goto ldv_33438;   103         goto ldv_33437;   102         ldv_33437:;   102         uio_unregister_device(p) { /* Function call is skipped due to function is undefined */}   103         const void *__CPAchecker_TMP_0 = (const void *)(p->name);   103         kfree(__CPAchecker_TMP_0) { /* Function call is skipped due to function is undefined */}   101         cnt = cnt + 1;   101         p = p + 1;   102         ldv_33438:;   103         goto ldv_33437;   102         ldv_33437:;   102         uio_unregister_device(p) { /* Function call is skipped due to function is undefined */}   103         const void *__CPAchecker_TMP_0 = (const void *)(p->name);   103         kfree(__CPAchecker_TMP_0) { /* Function call is skipped due to function is undefined */}   101         cnt = cnt + 1;   101         p = p + 1;   102         ldv_33438:;   103         goto ldv_33437;   102         ldv_33437:;   102         uio_unregister_device(p) { /* Function call is skipped due to function is undefined */}   103         const void *__CPAchecker_TMP_0 = (const void *)(p->name);   103         kfree(__CPAchecker_TMP_0) { /* Function call is skipped due to function is undefined */}   101         cnt = cnt + 1;   101         p = p + 1;   102         ldv_33438:;   103         goto ldv_33437;   102         ldv_33437:;   102         uio_unregister_device(p) { /* Function call is skipped due to function is undefined */}   103         const void *__CPAchecker_TMP_0 = (const void *)(p->name);   103         kfree(__CPAchecker_TMP_0) { /* Function call is skipped due to function is undefined */}   101         cnt = cnt + 1;   101         p = p + 1;   102         ldv_33438:;   103         goto ldv_33437;   102         ldv_33437:;   102         uio_unregister_device(p) { /* Function call is skipped due to function is undefined */}   103         const void *__CPAchecker_TMP_0 = (const void *)(p->name);   103         kfree(__CPAchecker_TMP_0) { /* Function call is skipped due to function is undefined */}   101         cnt = cnt + 1;   101         p = p + 1;   102         ldv_33438:;   103         goto ldv_33437;   102         ldv_33437:;   102         uio_unregister_device(p) { /* Function call is skipped due to function is undefined */}   103         const void *__CPAchecker_TMP_0 = (const void *)(p->name);   103         kfree(__CPAchecker_TMP_0) { /* Function call is skipped due to function is undefined */}   101         cnt = cnt + 1;   101         p = p + 1;   102         ldv_33438:;   103         goto ldv_33437;   102         ldv_33437:;   102         uio_unregister_device(p) { /* Function call is skipped due to function is undefined */}   103         const void *__CPAchecker_TMP_0 = (const void *)(p->name);   103         kfree(__CPAchecker_TMP_0) { /* Function call is skipped due to function is undefined */}   101         cnt = cnt + 1;   101         p = p + 1;   102         ldv_33438:;   103         goto ldv_33437;   102         ldv_33437:;   102         uio_unregister_device(p) { /* Function call is skipped due to function is undefined */}   103         const void *__CPAchecker_TMP_0 = (const void *)(p->name);   103         kfree(__CPAchecker_TMP_0) { /* Function call is skipped due to function is undefined */}   101         cnt = cnt + 1;   101         p = p + 1;   102         ldv_33438:;   105         volatile void *__CPAchecker_TMP_1 = (volatile void *)(gdev->prussio_vaddr);   105         iounmap(__CPAchecker_TMP_1) { /* Function call is skipped due to function is undefined */}   106         unsigned long __CPAchecker_TMP_2 = (unsigned long)(gdev->ddr_vaddr);               {   500           return ;;}   111         gen_pool_free(gdev->sram_pool, gdev->sram_vaddr, (size_t )sram_pool_sz) { /* Function call is skipped due to function is undefined */}   114         const void *__CPAchecker_TMP_3 = (const void *)(gdev->info);   114         kfree(__CPAchecker_TMP_3) { /* Function call is skipped due to function is undefined */}   115         clk_put(gdev->pruss_clk) { /* Function call is skipped due to function is undefined */}   116         kfree((const void *)gdev) { /* Function call is skipped due to function is undefined */}}   386     ldv_s_pruss_driver_platform_driver = 0;   392     goto ldv_33501;   395     ldv_33501:;   396     ldv_33505:;   334     tmp___0 = nondet_int() { /* Function call is skipped due to function is undefined */}   342     ldv_module_exit:;           {} } |       Source code     
     1 #ifndef _ASM_X86_DMA_MAPPING_H
    2 #define _ASM_X86_DMA_MAPPING_H
    3 
    4 /*
    5  * IOMMU interface. See Documentation/DMA-API-HOWTO.txt and
    6  * Documentation/DMA-API.txt for documentation.
    7  */
    8 
    9 #include <linux/kmemcheck.h>
   10 #include <linux/scatterlist.h>
   11 #include <linux/dma-debug.h>
   12 #include <asm/io.h>
   13 #include <asm/swiotlb.h>
   14 #include <linux/dma-contiguous.h>
   15 
   16 #ifdef CONFIG_ISA
   17 # define ISA_DMA_BIT_MASK DMA_BIT_MASK(24)
   18 #else
   19 # define ISA_DMA_BIT_MASK DMA_BIT_MASK(32)
   20 #endif
   21 
   22 #define DMA_ERROR_CODE	0
   23 
   24 extern int iommu_merge;
   25 extern struct device x86_dma_fallback_dev;
   26 extern int panic_on_overflow;
   27 
   28 extern struct dma_map_ops *dma_ops;
   29 
   30 static inline struct dma_map_ops *get_dma_ops(struct device *dev)
   31 {
   32 #ifndef CONFIG_X86_DEV_DMA_OPS
   33 	return dma_ops;
   34 #else
   35 	if (unlikely(!dev) || !dev->archdata.dma_ops)
   36 		return dma_ops;
   37 	else
   38 		return dev->archdata.dma_ops;
   39 #endif
   40 }
   41 
   42 bool arch_dma_alloc_attrs(struct device **dev, gfp_t *gfp);
   43 #define arch_dma_alloc_attrs arch_dma_alloc_attrs
   44 
   45 #define HAVE_ARCH_DMA_SUPPORTED 1
   46 extern int dma_supported(struct device *hwdev, u64 mask);
   47 
   48 extern void *dma_generic_alloc_coherent(struct device *dev, size_t size,
   49 					dma_addr_t *dma_addr, gfp_t flag,
   50 					unsigned long attrs);
   51 
   52 extern void dma_generic_free_coherent(struct device *dev, size_t size,
   53 				      void *vaddr, dma_addr_t dma_addr,
   54 				      unsigned long attrs);
   55 
   56 #ifdef CONFIG_X86_DMA_REMAP /* Platform code defines bridge-specific code */
   57 extern bool dma_capable(struct device *dev, dma_addr_t addr, size_t size);
   58 extern dma_addr_t phys_to_dma(struct device *dev, phys_addr_t paddr);
   59 extern phys_addr_t dma_to_phys(struct device *dev, dma_addr_t daddr);
   60 #else
   61 
   62 static inline bool dma_capable(struct device *dev, dma_addr_t addr, size_t size)
   63 {
   64 	if (!dev->dma_mask)
   65 		return 0;
   66 
   67 	return addr + size - 1 <= *dev->dma_mask;
   68 }
   69 
   70 static inline dma_addr_t phys_to_dma(struct device *dev, phys_addr_t paddr)
   71 {
   72 	return paddr;
   73 }
   74 
   75 static inline phys_addr_t dma_to_phys(struct device *dev, dma_addr_t daddr)
   76 {
   77 	return daddr;
   78 }
   79 #endif /* CONFIG_X86_DMA_REMAP */
   80 
   81 static inline void
   82 dma_cache_sync(struct device *dev, void *vaddr, size_t size,
   83 	enum dma_data_direction dir)
   84 {
   85 	flush_write_buffers();
   86 }
   87 
   88 static inline unsigned long dma_alloc_coherent_mask(struct device *dev,
   89 						    gfp_t gfp)
   90 {
   91 	unsigned long dma_mask = 0;
   92 
   93 	dma_mask = dev->coherent_dma_mask;
   94 	if (!dma_mask)
   95 		dma_mask = (gfp & GFP_DMA) ? DMA_BIT_MASK(24) : DMA_BIT_MASK(32);
   96 
   97 	return dma_mask;
   98 }
   99 
  100 static inline gfp_t dma_alloc_coherent_gfp_flags(struct device *dev, gfp_t gfp)
  101 {
  102 	unsigned long dma_mask = dma_alloc_coherent_mask(dev, gfp);
  103 
  104 	if (dma_mask <= DMA_BIT_MASK(24))
  105 		gfp |= GFP_DMA;
  106 #ifdef CONFIG_X86_64
  107 	if (dma_mask <= DMA_BIT_MASK(32) && !(gfp & GFP_DMA))
  108 		gfp |= GFP_DMA32;
  109 #endif
  110        return gfp;
  111 }
  112 
  113 #endif           1 #ifndef _ASM_X86_IO_H
    2 #define _ASM_X86_IO_H
    3 
    4 /*
    5  * This file contains the definitions for the x86 IO instructions
    6  * inb/inw/inl/outb/outw/outl and the "string versions" of the same
    7  * (insb/insw/insl/outsb/outsw/outsl). You can also use "pausing"
    8  * versions of the single-IO instructions (inb_p/inw_p/..).
    9  *
   10  * This file is not meant to be obfuscating: it's just complicated
   11  * to (a) handle it all in a way that makes gcc able to optimize it
   12  * as well as possible and (b) trying to avoid writing the same thing
   13  * over and over again with slight variations and possibly making a
   14  * mistake somewhere.
   15  */
   16 
   17 /*
   18  * Thanks to James van Artsdalen for a better timing-fix than
   19  * the two short jumps: using outb's to a nonexistent port seems
   20  * to guarantee better timings even on fast machines.
   21  *
   22  * On the other hand, I'd like to be sure of a non-existent port:
   23  * I feel a bit unsafe about using 0x80 (should be safe, though)
   24  *
   25  *		Linus
   26  */
   27 
   28  /*
   29   *  Bit simplified and optimized by Jan Hubicka
   30   *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999.
   31   *
   32   *  isa_memset_io, isa_memcpy_fromio, isa_memcpy_toio added,
   33   *  isa_read[wl] and isa_write[wl] fixed
   34   *  - Arnaldo Carvalho de Melo <acme@conectiva.com.br>
   35   */
   36 
   37 #define ARCH_HAS_IOREMAP_WC
   38 #define ARCH_HAS_IOREMAP_WT
   39 
   40 #include <linux/string.h>
   41 #include <linux/compiler.h>
   42 #include <asm/page.h>
   43 #include <asm/early_ioremap.h>
   44 #include <asm/pgtable_types.h>
   45 
   46 #define build_mmio_read(name, size, type, reg, barrier) \
   47 static inline type name(const volatile void __iomem *addr) \
   48 { type ret; asm volatile("mov" size " %1,%0":reg (ret) \
   49 :"m" (*(volatile type __force *)addr) barrier); return ret; }
   50 
   51 #define build_mmio_write(name, size, type, reg, barrier) \
   52 static inline void name(type val, volatile void __iomem *addr) \
   53 { asm volatile("mov" size " %0,%1": :reg (val), \
   54 "m" (*(volatile type __force *)addr) barrier); }
   55 
   56 build_mmio_read(readb, "b", unsigned char, "=q", :"memory")
   57 build_mmio_read(readw, "w", unsigned short, "=r", :"memory")
   58 build_mmio_read(readl, "l", unsigned int, "=r", :"memory")
   59 
   60 build_mmio_read(__readb, "b", unsigned char, "=q", )
   61 build_mmio_read(__readw, "w", unsigned short, "=r", )
   62 build_mmio_read(__readl, "l", unsigned int, "=r", )
   63 
   64 build_mmio_write(writeb, "b", unsigned char, "q", :"memory")
   65 build_mmio_write(writew, "w", unsigned short, "r", :"memory")
   66 build_mmio_write(writel, "l", unsigned int, "r", :"memory")
   67 
   68 build_mmio_write(__writeb, "b", unsigned char, "q", )
   69 build_mmio_write(__writew, "w", unsigned short, "r", )
   70 build_mmio_write(__writel, "l", unsigned int, "r", )
   71 
   72 #define readb_relaxed(a) __readb(a)
   73 #define readw_relaxed(a) __readw(a)
   74 #define readl_relaxed(a) __readl(a)
   75 #define __raw_readb __readb
   76 #define __raw_readw __readw
   77 #define __raw_readl __readl
   78 
   79 #define writeb_relaxed(v, a) __writeb(v, a)
   80 #define writew_relaxed(v, a) __writew(v, a)
   81 #define writel_relaxed(v, a) __writel(v, a)
   82 #define __raw_writeb __writeb
   83 #define __raw_writew __writew
   84 #define __raw_writel __writel
   85 
   86 #define mmiowb() barrier()
   87 
   88 #ifdef CONFIG_X86_64
   89 
   90 build_mmio_read(readq, "q", unsigned long, "=r", :"memory")
   91 build_mmio_write(writeq, "q", unsigned long, "r", :"memory")
   92 
   93 #define readq_relaxed(a)	readq(a)
   94 #define writeq_relaxed(v, a)	writeq(v, a)
   95 
   96 #define __raw_readq(a)		readq(a)
   97 #define __raw_writeq(val, addr)	writeq(val, addr)
   98 
   99 /* Let people know that we have them */
  100 #define readq			readq
  101 #define writeq			writeq
  102 
  103 #endif
  104 
  105 /**
  106  *	virt_to_phys	-	map virtual addresses to physical
  107  *	@address: address to remap
  108  *
  109  *	The returned physical address is the physical (CPU) mapping for
  110  *	the memory address given. It is only valid to use this function on
  111  *	addresses directly mapped or allocated via kmalloc.
  112  *
  113  *	This function does not give bus mappings for DMA transfers. In
  114  *	almost all conceivable cases a device driver should not be using
  115  *	this function
  116  */
  117 
  118 static inline phys_addr_t virt_to_phys(volatile void *address)
  119 {
  120 	return __pa(address);
  121 }
  122 
  123 /**
  124  *	phys_to_virt	-	map physical address to virtual
  125  *	@address: address to remap
  126  *
  127  *	The returned virtual address is a current CPU mapping for
  128  *	the memory address given. It is only valid to use this function on
  129  *	addresses that have a kernel mapping
  130  *
  131  *	This function does not handle bus mappings for DMA transfers. In
  132  *	almost all conceivable cases a device driver should not be using
  133  *	this function
  134  */
  135 
  136 static inline void *phys_to_virt(phys_addr_t address)
  137 {
  138 	return __va(address);
  139 }
  140 
  141 /*
  142  * Change "struct page" to physical address.
  143  */
  144 #define page_to_phys(page)    ((dma_addr_t)page_to_pfn(page) << PAGE_SHIFT)
  145 
  146 /*
  147  * ISA I/O bus memory addresses are 1:1 with the physical address.
  148  * However, we truncate the address to unsigned int to avoid undesirable
  149  * promitions in legacy drivers.
  150  */
  151 static inline unsigned int isa_virt_to_bus(volatile void *address)
  152 {
  153 	return (unsigned int)virt_to_phys(address);
  154 }
  155 #define isa_page_to_bus(page)	((unsigned int)page_to_phys(page))
  156 #define isa_bus_to_virt		phys_to_virt
  157 
  158 /*
  159  * However PCI ones are not necessarily 1:1 and therefore these interfaces
  160  * are forbidden in portable PCI drivers.
  161  *
  162  * Allow them on x86 for legacy drivers, though.
  163  */
  164 #define virt_to_bus virt_to_phys
  165 #define bus_to_virt phys_to_virt
  166 
  167 /**
  168  * ioremap     -   map bus memory into CPU space
  169  * @offset:    bus address of the memory
  170  * @size:      size of the resource to map
  171  *
  172  * ioremap performs a platform specific sequence of operations to
  173  * make bus memory CPU accessible via the readb/readw/readl/writeb/
  174  * writew/writel functions and the other mmio helpers. The returned
  175  * address is not guaranteed to be usable directly as a virtual
  176  * address.
  177  *
  178  * If the area you are trying to map is a PCI BAR you should have a
  179  * look at pci_iomap().
  180  */
  181 extern void __iomem *ioremap_nocache(resource_size_t offset, unsigned long size);
  182 extern void __iomem *ioremap_uc(resource_size_t offset, unsigned long size);
  183 #define ioremap_uc ioremap_uc
  184 
  185 extern void __iomem *ioremap_cache(resource_size_t offset, unsigned long size);
  186 extern void __iomem *ioremap_prot(resource_size_t offset, unsigned long size,
  187 				unsigned long prot_val);
  188 
  189 /*
  190  * The default ioremap() behavior is non-cached:
  191  */
  192 static inline void __iomem *ioremap(resource_size_t offset, unsigned long size)
  193 {
  194 	return ioremap_nocache(offset, size);
  195 }
  196 
  197 extern void iounmap(volatile void __iomem *addr);
  198 
  199 extern void set_iounmap_nonlazy(void);
  200 
  201 #ifdef __KERNEL__
  202 
  203 #include <asm-generic/iomap.h>
  204 
  205 /*
  206  * Convert a virtual cached pointer to an uncached pointer
  207  */
  208 #define xlate_dev_kmem_ptr(p)	p
  209 
  210 static inline void
  211 memset_io(volatile void __iomem *addr, unsigned char val, size_t count)
  212 {
  213 	memset((void __force *)addr, val, count);
  214 }
  215 
  216 static inline void
  217 memcpy_fromio(void *dst, const volatile void __iomem *src, size_t count)
  218 {
  219 	memcpy(dst, (const void __force *)src, count);
  220 }
  221 
  222 static inline void
  223 memcpy_toio(volatile void __iomem *dst, const void *src, size_t count)
  224 {
  225 	memcpy((void __force *)dst, src, count);
  226 }
  227 
  228 /*
  229  * ISA space is 'always mapped' on a typical x86 system, no need to
  230  * explicitly ioremap() it. The fact that the ISA IO space is mapped
  231  * to PAGE_OFFSET is pure coincidence - it does not mean ISA values
  232  * are physical addresses. The following constant pointer can be
  233  * used as the IO-area pointer (it can be iounmapped as well, so the
  234  * analogy with PCI is quite large):
  235  */
  236 #define __ISA_IO_base ((char __iomem *)(PAGE_OFFSET))
  237 
  238 /*
  239  *	Cache management
  240  *
  241  *	This needed for two cases
  242  *	1. Out of order aware processors
  243  *	2. Accidentally out of order processors (PPro errata #51)
  244  */
  245 
  246 static inline void flush_write_buffers(void)
  247 {
  248 #if defined(CONFIG_X86_PPRO_FENCE)
  249 	asm volatile("lock; addl $0,0(%%esp)": : :"memory");
  250 #endif
  251 }
  252 
  253 #endif /* __KERNEL__ */
  254 
  255 extern void native_io_delay(void);
  256 
  257 extern int io_delay_type;
  258 extern void io_delay_init(void);
  259 
  260 #if defined(CONFIG_PARAVIRT)
  261 #include <asm/paravirt.h>
  262 #else
  263 
  264 static inline void slow_down_io(void)
  265 {
  266 	native_io_delay();
  267 #ifdef REALLY_SLOW_IO
  268 	native_io_delay();
  269 	native_io_delay();
  270 	native_io_delay();
  271 #endif
  272 }
  273 
  274 #endif
  275 
  276 #define BUILDIO(bwl, bw, type)						\
  277 static inline void out##bwl(unsigned type value, int port)		\
  278 {									\
  279 	asm volatile("out" #bwl " %" #bw "0, %w1"			\
  280 		     : : "a"(value), "Nd"(port));			\
  281 }									\
  282 									\
  283 static inline unsigned type in##bwl(int port)				\
  284 {									\
  285 	unsigned type value;						\
  286 	asm volatile("in" #bwl " %w1, %" #bw "0"			\
  287 		     : "=a"(value) : "Nd"(port));			\
  288 	return value;							\
  289 }									\
  290 									\
  291 static inline void out##bwl##_p(unsigned type value, int port)		\
  292 {									\
  293 	out##bwl(value, port);						\
  294 	slow_down_io();							\
  295 }									\
  296 									\
  297 static inline unsigned type in##bwl##_p(int port)			\
  298 {									\
  299 	unsigned type value = in##bwl(port);				\
  300 	slow_down_io();							\
  301 	return value;							\
  302 }									\
  303 									\
  304 static inline void outs##bwl(int port, const void *addr, unsigned long count) \
  305 {									\
  306 	asm volatile("rep; outs" #bwl					\
  307 		     : "+S"(addr), "+c"(count) : "d"(port));		\
  308 }									\
  309 									\
  310 static inline void ins##bwl(int port, void *addr, unsigned long count)	\
  311 {									\
  312 	asm volatile("rep; ins" #bwl					\
  313 		     : "+D"(addr), "+c"(count) : "d"(port));		\
  314 }
  315 
  316 BUILDIO(b, b, char)
  317 BUILDIO(w, w, short)
  318 BUILDIO(l, , int)
  319 
  320 extern void *xlate_dev_mem_ptr(phys_addr_t phys);
  321 extern void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr);
  322 
  323 extern int ioremap_change_attr(unsigned long vaddr, unsigned long size,
  324 				enum page_cache_mode pcm);
  325 extern void __iomem *ioremap_wc(resource_size_t offset, unsigned long size);
  326 extern void __iomem *ioremap_wt(resource_size_t offset, unsigned long size);
  327 
  328 extern bool is_early_ioremap_ptep(pte_t *ptep);
  329 
  330 #ifdef CONFIG_XEN
  331 #include <xen/xen.h>
  332 struct bio_vec;
  333 
  334 extern bool xen_biovec_phys_mergeable(const struct bio_vec *vec1,
  335 				      const struct bio_vec *vec2);
  336 
  337 #define BIOVEC_PHYS_MERGEABLE(vec1, vec2)				\
  338 	(__BIOVEC_PHYS_MERGEABLE(vec1, vec2) &&				\
  339 	 (!xen_domain() || xen_biovec_phys_mergeable(vec1, vec2)))
  340 #endif	/* CONFIG_XEN */
  341 
  342 #define IO_SPACE_LIMIT 0xffff
  343 
  344 #ifdef CONFIG_MTRR
  345 extern int __must_check arch_phys_wc_index(int handle);
  346 #define arch_phys_wc_index arch_phys_wc_index
  347 
  348 extern int __must_check arch_phys_wc_add(unsigned long base,
  349 					 unsigned long size);
  350 extern void arch_phys_wc_del(int handle);
  351 #define arch_phys_wc_add arch_phys_wc_add
  352 #endif
  353 
  354 #endif /* _ASM_X86_IO_H */           1 
    2 /*
    3  * Programmable Real-Time Unit Sub System (PRUSS) UIO driver (uio_pruss)
    4  *
    5  * This driver exports PRUSS host event out interrupts and PRUSS, L3 RAM,
    6  * and DDR RAM to user space for applications interacting with PRUSS firmware
    7  *
    8  * Copyright (C) 2010-11 Texas Instruments Incorporated - http://www.ti.com/
    9  *
   10  * This program is free software; you can redistribute it and/or
   11  * modify it under the terms of the GNU General Public License as
   12  * published by the Free Software Foundation version 2.
   13  *
   14  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
   15  * kind, whether express or implied; without even the implied warranty
   16  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   17  * GNU General Public License for more details.
   18  */
   19 #include <linux/device.h>
   20 #include <linux/module.h>
   21 #include <linux/moduleparam.h>
   22 #include <linux/platform_device.h>
   23 #include <linux/uio_driver.h>
   24 #include <linux/platform_data/uio_pruss.h>
   25 #include <linux/io.h>
   26 #include <linux/clk.h>
   27 #include <linux/dma-mapping.h>
   28 #include <linux/sizes.h>
   29 #include <linux/slab.h>
   30 #include <linux/genalloc.h>
   31 
   32 #define DRV_NAME "pruss_uio"
   33 #define DRV_VERSION "1.0"
   34 
   35 static int sram_pool_sz = SZ_16K;
   36 module_param(sram_pool_sz, int, 0);
   37 MODULE_PARM_DESC(sram_pool_sz, "sram pool size to allocate ");
   38 
   39 static int extram_pool_sz = SZ_256K;
   40 module_param(extram_pool_sz, int, 0);
   41 MODULE_PARM_DESC(extram_pool_sz, "external ram pool size to allocate");
   42 
   43 /*
   44  * Host event IRQ numbers from PRUSS - PRUSS can generate up to 8 interrupt
   45  * events to AINTC of ARM host processor - which can be used for IPC b/w PRUSS
   46  * firmware and user space application, async notification from PRU firmware
   47  * to user space application
   48  * 3	PRU_EVTOUT0
   49  * 4	PRU_EVTOUT1
   50  * 5	PRU_EVTOUT2
   51  * 6	PRU_EVTOUT3
   52  * 7	PRU_EVTOUT4
   53  * 8	PRU_EVTOUT5
   54  * 9	PRU_EVTOUT6
   55  * 10	PRU_EVTOUT7
   56 */
   57 #define MAX_PRUSS_EVT	8
   58 
   59 #define PINTC_HIDISR	0x0038
   60 #define PINTC_HIPIR	0x0900
   61 #define HIPIR_NOPEND	0x80000000
   62 #define PINTC_HIER	0x1500
   63 
   64 struct uio_pruss_dev {
   65 	struct uio_info *info;
   66 	struct clk *pruss_clk;
   67 	dma_addr_t sram_paddr;
   68 	dma_addr_t ddr_paddr;
   69 	void __iomem *prussio_vaddr;
   70 	unsigned long sram_vaddr;
   71 	void *ddr_vaddr;
   72 	unsigned int hostirq_start;
   73 	unsigned int pintc_base;
   74 	struct gen_pool *sram_pool;
   75 };
   76 
   77 static irqreturn_t pruss_handler(int irq, struct uio_info *info)
   78 {
   79 	struct uio_pruss_dev *gdev = info->priv;
   80 	int intr_bit = (irq - gdev->hostirq_start + 2);
   81 	int val, intr_mask = (1 << intr_bit);
   82 	void __iomem *base = gdev->prussio_vaddr + gdev->pintc_base;
   83 	void __iomem *intren_reg = base + PINTC_HIER;
   84 	void __iomem *intrdis_reg = base + PINTC_HIDISR;
   85 	void __iomem *intrstat_reg = base + PINTC_HIPIR + (intr_bit << 2);
   86 
   87 	val = ioread32(intren_reg);
   88 	/* Is interrupt enabled and active ? */
   89 	if (!(val & intr_mask) && (ioread32(intrstat_reg) & HIPIR_NOPEND))
   90 		return IRQ_NONE;
   91 	/* Disable interrupt */
   92 	iowrite32(intr_bit, intrdis_reg);
   93 	return IRQ_HANDLED;
   94 }
   95 
   96 static void pruss_cleanup(struct device *dev, struct uio_pruss_dev *gdev)
   97 {
   98 	int cnt;
   99 	struct uio_info *p = gdev->info;
  100 
  101 	for (cnt = 0; cnt < MAX_PRUSS_EVT; cnt++, p++) {
  102 		uio_unregister_device(p);
  103 		kfree(p->name);
  104 	}
  105 	iounmap(gdev->prussio_vaddr);
  106 	if (gdev->ddr_vaddr) {
  107 		dma_free_coherent(dev, extram_pool_sz, gdev->ddr_vaddr,
  108 			gdev->ddr_paddr);
  109 	}
  110 	if (gdev->sram_vaddr)
  111 		gen_pool_free(gdev->sram_pool,
  112 			      gdev->sram_vaddr,
  113 			      sram_pool_sz);
  114 	kfree(gdev->info);
  115 	clk_put(gdev->pruss_clk);
  116 	kfree(gdev);
  117 }
  118 
  119 static int pruss_probe(struct platform_device *pdev)
  120 {
  121 	struct uio_info *p;
  122 	struct uio_pruss_dev *gdev;
  123 	struct resource *regs_prussio;
  124 	struct device *dev = &pdev->dev;
  125 	int ret = -ENODEV, cnt = 0, len;
  126 	struct uio_pruss_pdata *pdata = dev_get_platdata(dev);
  127 
  128 	gdev = kzalloc(sizeof(struct uio_pruss_dev), GFP_KERNEL);
  129 	if (!gdev)
  130 		return -ENOMEM;
  131 
  132 	gdev->info = kzalloc(sizeof(*p) * MAX_PRUSS_EVT, GFP_KERNEL);
  133 	if (!gdev->info) {
  134 		kfree(gdev);
  135 		return -ENOMEM;
  136 	}
  137 
  138 	/* Power on PRU in case its not done as part of boot-loader */
  139 	gdev->pruss_clk = clk_get(dev, "pruss");
  140 	if (IS_ERR(gdev->pruss_clk)) {
  141 		dev_err(dev, "Failed to get clock\n");
  142 		ret = PTR_ERR(gdev->pruss_clk);
  143 		kfree(gdev->info);
  144 		kfree(gdev);
  145 		return ret;
  146 	} else {
  147 		clk_enable(gdev->pruss_clk);
  148 	}
  149 
  150 	regs_prussio = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  151 	if (!regs_prussio) {
  152 		dev_err(dev, "No PRUSS I/O resource specified\n");
  153 		goto out_free;
  154 	}
  155 
  156 	if (!regs_prussio->start) {
  157 		dev_err(dev, "Invalid memory resource\n");
  158 		goto out_free;
  159 	}
  160 
  161 	if (pdata->sram_pool) {
  162 		gdev->sram_pool = pdata->sram_pool;
  163 		gdev->sram_vaddr =
  164 			(unsigned long)gen_pool_dma_alloc(gdev->sram_pool,
  165 					sram_pool_sz, &gdev->sram_paddr);
  166 		if (!gdev->sram_vaddr) {
  167 			dev_err(dev, "Could not allocate SRAM pool\n");
  168 			goto out_free;
  169 		}
  170 	}
  171 
  172 	gdev->ddr_vaddr = dma_alloc_coherent(dev, extram_pool_sz,
  173 				&(gdev->ddr_paddr), GFP_KERNEL | GFP_DMA);
  174 	if (!gdev->ddr_vaddr) {
  175 		dev_err(dev, "Could not allocate external memory\n");
  176 		goto out_free;
  177 	}
  178 
  179 	len = resource_size(regs_prussio);
  180 	gdev->prussio_vaddr = ioremap(regs_prussio->start, len);
  181 	if (!gdev->prussio_vaddr) {
  182 		dev_err(dev, "Can't remap PRUSS I/O  address range\n");
  183 		goto out_free;
  184 	}
  185 
  186 	gdev->pintc_base = pdata->pintc_base;
  187 	gdev->hostirq_start = platform_get_irq(pdev, 0);
  188 
  189 	for (cnt = 0, p = gdev->info; cnt < MAX_PRUSS_EVT; cnt++, p++) {
  190 		p->mem[0].addr = regs_prussio->start;
  191 		p->mem[0].size = resource_size(regs_prussio);
  192 		p->mem[0].memtype = UIO_MEM_PHYS;
  193 
  194 		p->mem[1].addr = gdev->sram_paddr;
  195 		p->mem[1].size = sram_pool_sz;
  196 		p->mem[1].memtype = UIO_MEM_PHYS;
  197 
  198 		p->mem[2].addr = gdev->ddr_paddr;
  199 		p->mem[2].size = extram_pool_sz;
  200 		p->mem[2].memtype = UIO_MEM_PHYS;
  201 
  202 		p->name = kasprintf(GFP_KERNEL, "pruss_evt%d", cnt);
  203 		p->version = DRV_VERSION;
  204 
  205 		/* Register PRUSS IRQ lines */
  206 		p->irq = gdev->hostirq_start + cnt;
  207 		p->handler = pruss_handler;
  208 		p->priv = gdev;
  209 
  210 		ret = uio_register_device(dev, p);
  211 		if (ret < 0)
  212 			goto out_free;
  213 	}
  214 
  215 	platform_set_drvdata(pdev, gdev);
  216 	return 0;
  217 
  218 out_free:
  219 	pruss_cleanup(dev, gdev);
  220 	return ret;
  221 }
  222 
  223 static int pruss_remove(struct platform_device *dev)
  224 {
  225 	struct uio_pruss_dev *gdev = platform_get_drvdata(dev);
  226 
  227 	pruss_cleanup(&dev->dev, gdev);
  228 	return 0;
  229 }
  230 
  231 static struct platform_driver pruss_driver = {
  232 	.probe = pruss_probe,
  233 	.remove = pruss_remove,
  234 	.driver = {
  235 		   .name = DRV_NAME,
  236 		   },
  237 };
  238 
  239 module_platform_driver(pruss_driver);
  240 
  241 MODULE_LICENSE("GPL v2");
  242 MODULE_VERSION(DRV_VERSION);
  243 MODULE_AUTHOR("Amit Chatterjee <amit.chatterjee@ti.com>");
  244 MODULE_AUTHOR("Pratheesh Gangadhar <pratheesh@ti.com>");
  245 
  246 
  247 
  248 
  249 
  250 /* LDV_COMMENT_BEGIN_MAIN */
  251 #ifdef LDV_MAIN0_sequence_infinite_withcheck_stateful
  252 
  253 /*###########################################################################*/
  254 
  255 /*############## Driver Environment Generator 0.2 output ####################*/
  256 
  257 /*###########################################################################*/
  258 
  259 
  260 
  261 /* LDV_COMMENT_FUNCTION_DECLARE_LDV Special function for LDV verifier. Test if all kernel resources are correctly released by driver before driver will be unloaded. */
  262 void ldv_check_final_state(void);
  263 
  264 /* LDV_COMMENT_FUNCTION_DECLARE_LDV Special function for LDV verifier. Test correct return result. */
  265 void ldv_check_return_value(int res);
  266 
  267 /* LDV_COMMENT_FUNCTION_DECLARE_LDV Special function for LDV verifier. Test correct return result of probe() function. */
  268 void ldv_check_return_value_probe(int res);
  269 
  270 /* LDV_COMMENT_FUNCTION_DECLARE_LDV Special function for LDV verifier. Initializes the model. */
  271 void ldv_initialize(void);
  272 
  273 /* LDV_COMMENT_FUNCTION_DECLARE_LDV Special function for LDV verifier. Reinitializes the model between distinct model function calls. */
  274 void ldv_handler_precall(void);
  275 
  276 /* LDV_COMMENT_FUNCTION_DECLARE_LDV Special function for LDV verifier. Returns arbitrary interger value. */
  277 int nondet_int(void);
  278 
  279 /* LDV_COMMENT_VAR_DECLARE_LDV Special variable for LDV verifier. */
  280 int LDV_IN_INTERRUPT;
  281 
  282 /* LDV_COMMENT_FUNCTION_MAIN Main function for LDV verifier. */
  283 void ldv_main0_sequence_infinite_withcheck_stateful(void) {
  284 
  285 
  286 
  287 	/* LDV_COMMENT_BEGIN_VARIABLE_DECLARATION_PART */
  288 	/*============================= VARIABLE DECLARATION PART   =============================*/
  289 	/** STRUCT: struct type: platform_driver, struct name: pruss_driver **/
  290 	/* content: static int pruss_probe(struct platform_device *pdev)*/
  291 	/* LDV_COMMENT_BEGIN_PREP */
  292 	#define DRV_NAME "pruss_uio"
  293 	#define DRV_VERSION "1.0"
  294 	#define MAX_PRUSS_EVT	8
  295 	#define PINTC_HIDISR	0x0038
  296 	#define PINTC_HIPIR	0x0900
  297 	#define HIPIR_NOPEND	0x80000000
  298 	#define PINTC_HIER	0x1500
  299 	/* LDV_COMMENT_END_PREP */
  300 	/* LDV_COMMENT_VAR_DECLARE Variable declaration for function "pruss_probe" */
  301 	struct platform_device * var_group1;
  302 	/* LDV_COMMENT_VAR_DECLARE Variable declaration for test return result from function call "pruss_probe" */
  303 	static int res_pruss_probe_2;
  304 	/* content: static int pruss_remove(struct platform_device *dev)*/
  305 	/* LDV_COMMENT_BEGIN_PREP */
  306 	#define DRV_NAME "pruss_uio"
  307 	#define DRV_VERSION "1.0"
  308 	#define MAX_PRUSS_EVT	8
  309 	#define PINTC_HIDISR	0x0038
  310 	#define PINTC_HIPIR	0x0900
  311 	#define HIPIR_NOPEND	0x80000000
  312 	#define PINTC_HIER	0x1500
  313 	/* LDV_COMMENT_END_PREP */
  314 
  315 
  316 
  317 
  318 	/* LDV_COMMENT_END_VARIABLE_DECLARATION_PART */
  319 	/* LDV_COMMENT_BEGIN_VARIABLE_INITIALIZING_PART */
  320 	/*============================= VARIABLE INITIALIZING PART  =============================*/
  321 	LDV_IN_INTERRUPT=1;
  322 
  323 
  324 
  325 
  326 	/* LDV_COMMENT_END_VARIABLE_INITIALIZING_PART */
  327 	/* LDV_COMMENT_BEGIN_FUNCTION_CALL_SECTION */
  328 	/*============================= FUNCTION CALL SECTION       =============================*/
  329 	/* LDV_COMMENT_FUNCTION_CALL Initialize LDV model. */
  330 	ldv_initialize();
  331 	int ldv_s_pruss_driver_platform_driver = 0;
  332 
  333 
  334 	while(  nondet_int()
  335 		|| !(ldv_s_pruss_driver_platform_driver == 0)
  336 	) {
  337 
  338 		switch(nondet_int()) {
  339 
  340 			case 0: {
  341 
  342 				/** STRUCT: struct type: platform_driver, struct name: pruss_driver **/
  343 				if(ldv_s_pruss_driver_platform_driver==0) {
  344 
  345 				/* content: static int pruss_probe(struct platform_device *pdev)*/
  346 				/* LDV_COMMENT_BEGIN_PREP */
  347 				#define DRV_NAME "pruss_uio"
  348 				#define DRV_VERSION "1.0"
  349 				#define MAX_PRUSS_EVT	8
  350 				#define PINTC_HIDISR	0x0038
  351 				#define PINTC_HIPIR	0x0900
  352 				#define HIPIR_NOPEND	0x80000000
  353 				#define PINTC_HIER	0x1500
  354 				/* LDV_COMMENT_END_PREP */
  355 				/* LDV_COMMENT_FUNCTION_CALL Function from field "probe" from driver structure with callbacks "pruss_driver". Standart function test for correct return result. */
  356 				res_pruss_probe_2 = pruss_probe( var_group1);
  357 				 ldv_check_return_value(res_pruss_probe_2);
  358 				 ldv_check_return_value_probe(res_pruss_probe_2);
  359 				 if(res_pruss_probe_2) 
  360 					goto ldv_module_exit;
  361 				ldv_s_pruss_driver_platform_driver++;
  362 
  363 				}
  364 
  365 			}
  366 
  367 			break;
  368 			case 1: {
  369 
  370 				/** STRUCT: struct type: platform_driver, struct name: pruss_driver **/
  371 				if(ldv_s_pruss_driver_platform_driver==1) {
  372 
  373 				/* content: static int pruss_remove(struct platform_device *dev)*/
  374 				/* LDV_COMMENT_BEGIN_PREP */
  375 				#define DRV_NAME "pruss_uio"
  376 				#define DRV_VERSION "1.0"
  377 				#define MAX_PRUSS_EVT	8
  378 				#define PINTC_HIDISR	0x0038
  379 				#define PINTC_HIPIR	0x0900
  380 				#define HIPIR_NOPEND	0x80000000
  381 				#define PINTC_HIER	0x1500
  382 				/* LDV_COMMENT_END_PREP */
  383 				/* LDV_COMMENT_FUNCTION_CALL Function from field "remove" from driver structure with callbacks "pruss_driver" */
  384 				ldv_handler_precall();
  385 				pruss_remove( var_group1);
  386 				ldv_s_pruss_driver_platform_driver=0;
  387 
  388 				}
  389 
  390 			}
  391 
  392 			break;
  393 			default: break;
  394 
  395 		}
  396 
  397 	}
  398 
  399 	ldv_module_exit: 
  400 
  401 	/* LDV_COMMENT_FUNCTION_CALL Checks that all resources and locks are correctly released before the driver will be unloaded. */
  402 	ldv_final: ldv_check_final_state();
  403 
  404 	/* LDV_COMMENT_END_FUNCTION_CALL_SECTION */
  405 	return;
  406 
  407 }
  408 #endif
  409 
  410 /* LDV_COMMENT_END_MAIN */           1 
    2 #include <linux/kernel.h>
    3 bool ldv_is_err(const void *ptr);
    4 bool ldv_is_err_or_null(const void *ptr);
    5 void* ldv_err_ptr(long error);
    6 long ldv_ptr_err(const void *ptr);
    7 
    8 #include <linux/module.h>
    9 struct clk;
   10 
   11 extern void ldv_clk_disable_clk(struct clk *clk);
   12 extern int ldv_clk_enable_clk(void);
   13 extern void ldv_clk_disable_pruss_clk_of_uio_pruss_dev(struct clk *clk);
   14 extern int ldv_clk_enable_pruss_clk_of_uio_pruss_dev(void);
   15 #line 1 "/work/ldvuser/ref_launch/work/current--X--drivers--X--defaultlinux-4.9-rc1.tar.xz--X--320_7a--X--cpachecker/linux-4.9-rc1.tar.xz/csd_deg_dscv/14083/dscv_tempdir/dscv/ri/320_7a/drivers/uio/uio_pruss.c"
   16 
   17 /*
   18  * Programmable Real-Time Unit Sub System (PRUSS) UIO driver (uio_pruss)
   19  *
   20  * This driver exports PRUSS host event out interrupts and PRUSS, L3 RAM,
   21  * and DDR RAM to user space for applications interacting with PRUSS firmware
   22  *
   23  * Copyright (C) 2010-11 Texas Instruments Incorporated - http://www.ti.com/
   24  *
   25  * This program is free software; you can redistribute it and/or
   26  * modify it under the terms of the GNU General Public License as
   27  * published by the Free Software Foundation version 2.
   28  *
   29  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
   30  * kind, whether express or implied; without even the implied warranty
   31  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   32  * GNU General Public License for more details.
   33  */
   34 #include <linux/device.h>
   35 #include <linux/module.h>
   36 #include <linux/moduleparam.h>
   37 #include <linux/platform_device.h>
   38 #include <linux/uio_driver.h>
   39 #include <linux/platform_data/uio_pruss.h>
   40 #include <linux/io.h>
   41 #include <linux/clk.h>
   42 #include <linux/dma-mapping.h>
   43 #include <linux/sizes.h>
   44 #include <linux/slab.h>
   45 #include <linux/genalloc.h>
   46 
   47 #define DRV_NAME "pruss_uio"
   48 #define DRV_VERSION "1.0"
   49 
   50 static int sram_pool_sz = SZ_16K;
   51 module_param(sram_pool_sz, int, 0);
   52 MODULE_PARM_DESC(sram_pool_sz, "sram pool size to allocate ");
   53 
   54 static int extram_pool_sz = SZ_256K;
   55 module_param(extram_pool_sz, int, 0);
   56 MODULE_PARM_DESC(extram_pool_sz, "external ram pool size to allocate");
   57 
   58 /*
   59  * Host event IRQ numbers from PRUSS - PRUSS can generate up to 8 interrupt
   60  * events to AINTC of ARM host processor - which can be used for IPC b/w PRUSS
   61  * firmware and user space application, async notification from PRU firmware
   62  * to user space application
   63  * 3	PRU_EVTOUT0
   64  * 4	PRU_EVTOUT1
   65  * 5	PRU_EVTOUT2
   66  * 6	PRU_EVTOUT3
   67  * 7	PRU_EVTOUT4
   68  * 8	PRU_EVTOUT5
   69  * 9	PRU_EVTOUT6
   70  * 10	PRU_EVTOUT7
   71 */
   72 #define MAX_PRUSS_EVT	8
   73 
   74 #define PINTC_HIDISR	0x0038
   75 #define PINTC_HIPIR	0x0900
   76 #define HIPIR_NOPEND	0x80000000
   77 #define PINTC_HIER	0x1500
   78 
   79 struct uio_pruss_dev {
   80 	struct uio_info *info;
   81 	struct clk *pruss_clk;
   82 	dma_addr_t sram_paddr;
   83 	dma_addr_t ddr_paddr;
   84 	void __iomem *prussio_vaddr;
   85 	unsigned long sram_vaddr;
   86 	void *ddr_vaddr;
   87 	unsigned int hostirq_start;
   88 	unsigned int pintc_base;
   89 	struct gen_pool *sram_pool;
   90 };
   91 
   92 static irqreturn_t pruss_handler(int irq, struct uio_info *info)
   93 {
   94 	struct uio_pruss_dev *gdev = info->priv;
   95 	int intr_bit = (irq - gdev->hostirq_start + 2);
   96 	int val, intr_mask = (1 << intr_bit);
   97 	void __iomem *base = gdev->prussio_vaddr + gdev->pintc_base;
   98 	void __iomem *intren_reg = base + PINTC_HIER;
   99 	void __iomem *intrdis_reg = base + PINTC_HIDISR;
  100 	void __iomem *intrstat_reg = base + PINTC_HIPIR + (intr_bit << 2);
  101 
  102 	val = ioread32(intren_reg);
  103 	/* Is interrupt enabled and active ? */
  104 	if (!(val & intr_mask) && (ioread32(intrstat_reg) & HIPIR_NOPEND))
  105 		return IRQ_NONE;
  106 	/* Disable interrupt */
  107 	iowrite32(intr_bit, intrdis_reg);
  108 	return IRQ_HANDLED;
  109 }
  110 
  111 static void pruss_cleanup(struct device *dev, struct uio_pruss_dev *gdev)
  112 {
  113 	int cnt;
  114 	struct uio_info *p = gdev->info;
  115 
  116 	for (cnt = 0; cnt < MAX_PRUSS_EVT; cnt++, p++) {
  117 		uio_unregister_device(p);
  118 		kfree(p->name);
  119 	}
  120 	iounmap(gdev->prussio_vaddr);
  121 	if (gdev->ddr_vaddr) {
  122 		dma_free_coherent(dev, extram_pool_sz, gdev->ddr_vaddr,
  123 			gdev->ddr_paddr);
  124 	}
  125 	if (gdev->sram_vaddr)
  126 		gen_pool_free(gdev->sram_pool,
  127 			      gdev->sram_vaddr,
  128 			      sram_pool_sz);
  129 	kfree(gdev->info);
  130 	clk_put(gdev->pruss_clk);
  131 	kfree(gdev);
  132 }
  133 
  134 static int pruss_probe(struct platform_device *pdev)
  135 {
  136 	struct uio_info *p;
  137 	struct uio_pruss_dev *gdev;
  138 	struct resource *regs_prussio;
  139 	struct device *dev = &pdev->dev;
  140 	int ret = -ENODEV, cnt = 0, len;
  141 	struct uio_pruss_pdata *pdata = dev_get_platdata(dev);
  142 
  143 	gdev = kzalloc(sizeof(struct uio_pruss_dev), GFP_KERNEL);
  144 	if (!gdev)
  145 		return -ENOMEM;
  146 
  147 	gdev->info = kzalloc(sizeof(*p) * MAX_PRUSS_EVT, GFP_KERNEL);
  148 	if (!gdev->info) {
  149 		kfree(gdev);
  150 		return -ENOMEM;
  151 	}
  152 
  153 	/* Power on PRU in case its not done as part of boot-loader */
  154 	gdev->pruss_clk = clk_get(dev, "pruss");
  155 	if (IS_ERR(gdev->pruss_clk)) {
  156 		dev_err(dev, "Failed to get clock\n");
  157 		ret = PTR_ERR(gdev->pruss_clk);
  158 		kfree(gdev->info);
  159 		kfree(gdev);
  160 		return ret;
  161 	} else {
  162 		clk_enable(gdev->pruss_clk);
  163 	}
  164 
  165 	regs_prussio = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  166 	if (!regs_prussio) {
  167 		dev_err(dev, "No PRUSS I/O resource specified\n");
  168 		goto out_free;
  169 	}
  170 
  171 	if (!regs_prussio->start) {
  172 		dev_err(dev, "Invalid memory resource\n");
  173 		goto out_free;
  174 	}
  175 
  176 	if (pdata->sram_pool) {
  177 		gdev->sram_pool = pdata->sram_pool;
  178 		gdev->sram_vaddr =
  179 			(unsigned long)gen_pool_dma_alloc(gdev->sram_pool,
  180 					sram_pool_sz, &gdev->sram_paddr);
  181 		if (!gdev->sram_vaddr) {
  182 			dev_err(dev, "Could not allocate SRAM pool\n");
  183 			goto out_free;
  184 		}
  185 	}
  186 
  187 	gdev->ddr_vaddr = dma_alloc_coherent(dev, extram_pool_sz,
  188 				&(gdev->ddr_paddr), GFP_KERNEL | GFP_DMA);
  189 	if (!gdev->ddr_vaddr) {
  190 		dev_err(dev, "Could not allocate external memory\n");
  191 		goto out_free;
  192 	}
  193 
  194 	len = resource_size(regs_prussio);
  195 	gdev->prussio_vaddr = ioremap(regs_prussio->start, len);
  196 	if (!gdev->prussio_vaddr) {
  197 		dev_err(dev, "Can't remap PRUSS I/O  address range\n");
  198 		goto out_free;
  199 	}
  200 
  201 	gdev->pintc_base = pdata->pintc_base;
  202 	gdev->hostirq_start = platform_get_irq(pdev, 0);
  203 
  204 	for (cnt = 0, p = gdev->info; cnt < MAX_PRUSS_EVT; cnt++, p++) {
  205 		p->mem[0].addr = regs_prussio->start;
  206 		p->mem[0].size = resource_size(regs_prussio);
  207 		p->mem[0].memtype = UIO_MEM_PHYS;
  208 
  209 		p->mem[1].addr = gdev->sram_paddr;
  210 		p->mem[1].size = sram_pool_sz;
  211 		p->mem[1].memtype = UIO_MEM_PHYS;
  212 
  213 		p->mem[2].addr = gdev->ddr_paddr;
  214 		p->mem[2].size = extram_pool_sz;
  215 		p->mem[2].memtype = UIO_MEM_PHYS;
  216 
  217 		p->name = kasprintf(GFP_KERNEL, "pruss_evt%d", cnt);
  218 		p->version = DRV_VERSION;
  219 
  220 		/* Register PRUSS IRQ lines */
  221 		p->irq = gdev->hostirq_start + cnt;
  222 		p->handler = pruss_handler;
  223 		p->priv = gdev;
  224 
  225 		ret = uio_register_device(dev, p);
  226 		if (ret < 0)
  227 			goto out_free;
  228 	}
  229 
  230 	platform_set_drvdata(pdev, gdev);
  231 	return 0;
  232 
  233 out_free:
  234 	pruss_cleanup(dev, gdev);
  235 	return ret;
  236 }
  237 
  238 static int pruss_remove(struct platform_device *dev)
  239 {
  240 	struct uio_pruss_dev *gdev = platform_get_drvdata(dev);
  241 
  242 	pruss_cleanup(&dev->dev, gdev);
  243 	return 0;
  244 }
  245 
  246 static struct platform_driver pruss_driver = {
  247 	.probe = pruss_probe,
  248 	.remove = pruss_remove,
  249 	.driver = {
  250 		   .name = DRV_NAME,
  251 		   },
  252 };
  253 
  254 module_platform_driver(pruss_driver);
  255 
  256 MODULE_LICENSE("GPL v2");
  257 MODULE_VERSION(DRV_VERSION);
  258 MODULE_AUTHOR("Amit Chatterjee <amit.chatterjee@ti.com>");
  259 MODULE_AUTHOR("Pratheesh Gangadhar <pratheesh@ti.com>");
  260 
  261 
  262 
  263 
  264 
  265 /* LDV_COMMENT_BEGIN_MAIN */
  266 #ifdef LDV_MAIN0_sequence_infinite_withcheck_stateful
  267 
  268 /*###########################################################################*/
  269 
  270 /*############## Driver Environment Generator 0.2 output ####################*/
  271 
  272 /*###########################################################################*/
  273 
  274 
  275 
  276 /* LDV_COMMENT_FUNCTION_DECLARE_LDV Special function for LDV verifier. Test if all kernel resources are correctly released by driver before driver will be unloaded. */
  277 void ldv_check_final_state(void);
  278 
  279 /* LDV_COMMENT_FUNCTION_DECLARE_LDV Special function for LDV verifier. Test correct return result. */
  280 void ldv_check_return_value(int res);
  281 
  282 /* LDV_COMMENT_FUNCTION_DECLARE_LDV Special function for LDV verifier. Test correct return result of probe() function. */
  283 void ldv_check_return_value_probe(int res);
  284 
  285 /* LDV_COMMENT_FUNCTION_DECLARE_LDV Special function for LDV verifier. Initializes the model. */
  286 void ldv_initialize(void);
  287 
  288 /* LDV_COMMENT_FUNCTION_DECLARE_LDV Special function for LDV verifier. Reinitializes the model between distinct model function calls. */
  289 void ldv_handler_precall(void);
  290 
  291 /* LDV_COMMENT_FUNCTION_DECLARE_LDV Special function for LDV verifier. Returns arbitrary interger value. */
  292 int nondet_int(void);
  293 
  294 /* LDV_COMMENT_VAR_DECLARE_LDV Special variable for LDV verifier. */
  295 int LDV_IN_INTERRUPT;
  296 
  297 /* LDV_COMMENT_FUNCTION_MAIN Main function for LDV verifier. */
  298 void ldv_main0_sequence_infinite_withcheck_stateful(void) {
  299 
  300 
  301 
  302 	/* LDV_COMMENT_BEGIN_VARIABLE_DECLARATION_PART */
  303 	/*============================= VARIABLE DECLARATION PART   =============================*/
  304 	/** STRUCT: struct type: platform_driver, struct name: pruss_driver **/
  305 	/* content: static int pruss_probe(struct platform_device *pdev)*/
  306 	/* LDV_COMMENT_BEGIN_PREP */
  307 	#define DRV_NAME "pruss_uio"
  308 	#define DRV_VERSION "1.0"
  309 	#define MAX_PRUSS_EVT	8
  310 	#define PINTC_HIDISR	0x0038
  311 	#define PINTC_HIPIR	0x0900
  312 	#define HIPIR_NOPEND	0x80000000
  313 	#define PINTC_HIER	0x1500
  314 	/* LDV_COMMENT_END_PREP */
  315 	/* LDV_COMMENT_VAR_DECLARE Variable declaration for function "pruss_probe" */
  316 	struct platform_device * var_group1;
  317 	/* LDV_COMMENT_VAR_DECLARE Variable declaration for test return result from function call "pruss_probe" */
  318 	static int res_pruss_probe_2;
  319 	/* content: static int pruss_remove(struct platform_device *dev)*/
  320 	/* LDV_COMMENT_BEGIN_PREP */
  321 	#define DRV_NAME "pruss_uio"
  322 	#define DRV_VERSION "1.0"
  323 	#define MAX_PRUSS_EVT	8
  324 	#define PINTC_HIDISR	0x0038
  325 	#define PINTC_HIPIR	0x0900
  326 	#define HIPIR_NOPEND	0x80000000
  327 	#define PINTC_HIER	0x1500
  328 	/* LDV_COMMENT_END_PREP */
  329 
  330 
  331 
  332 
  333 	/* LDV_COMMENT_END_VARIABLE_DECLARATION_PART */
  334 	/* LDV_COMMENT_BEGIN_VARIABLE_INITIALIZING_PART */
  335 	/*============================= VARIABLE INITIALIZING PART  =============================*/
  336 	LDV_IN_INTERRUPT=1;
  337 
  338 
  339 
  340 
  341 	/* LDV_COMMENT_END_VARIABLE_INITIALIZING_PART */
  342 	/* LDV_COMMENT_BEGIN_FUNCTION_CALL_SECTION */
  343 	/*============================= FUNCTION CALL SECTION       =============================*/
  344 	/* LDV_COMMENT_FUNCTION_CALL Initialize LDV model. */
  345 	ldv_initialize();
  346 	int ldv_s_pruss_driver_platform_driver = 0;
  347 
  348 
  349 	while(  nondet_int()
  350 		|| !(ldv_s_pruss_driver_platform_driver == 0)
  351 	) {
  352 
  353 		switch(nondet_int()) {
  354 
  355 			case 0: {
  356 
  357 				/** STRUCT: struct type: platform_driver, struct name: pruss_driver **/
  358 				if(ldv_s_pruss_driver_platform_driver==0) {
  359 
  360 				/* content: static int pruss_probe(struct platform_device *pdev)*/
  361 				/* LDV_COMMENT_BEGIN_PREP */
  362 				#define DRV_NAME "pruss_uio"
  363 				#define DRV_VERSION "1.0"
  364 				#define MAX_PRUSS_EVT	8
  365 				#define PINTC_HIDISR	0x0038
  366 				#define PINTC_HIPIR	0x0900
  367 				#define HIPIR_NOPEND	0x80000000
  368 				#define PINTC_HIER	0x1500
  369 				/* LDV_COMMENT_END_PREP */
  370 				/* LDV_COMMENT_FUNCTION_CALL Function from field "probe" from driver structure with callbacks "pruss_driver". Standart function test for correct return result. */
  371 				res_pruss_probe_2 = pruss_probe( var_group1);
  372 				 ldv_check_return_value(res_pruss_probe_2);
  373 				 ldv_check_return_value_probe(res_pruss_probe_2);
  374 				 if(res_pruss_probe_2) 
  375 					goto ldv_module_exit;
  376 				ldv_s_pruss_driver_platform_driver++;
  377 
  378 				}
  379 
  380 			}
  381 
  382 			break;
  383 			case 1: {
  384 
  385 				/** STRUCT: struct type: platform_driver, struct name: pruss_driver **/
  386 				if(ldv_s_pruss_driver_platform_driver==1) {
  387 
  388 				/* content: static int pruss_remove(struct platform_device *dev)*/
  389 				/* LDV_COMMENT_BEGIN_PREP */
  390 				#define DRV_NAME "pruss_uio"
  391 				#define DRV_VERSION "1.0"
  392 				#define MAX_PRUSS_EVT	8
  393 				#define PINTC_HIDISR	0x0038
  394 				#define PINTC_HIPIR	0x0900
  395 				#define HIPIR_NOPEND	0x80000000
  396 				#define PINTC_HIER	0x1500
  397 				/* LDV_COMMENT_END_PREP */
  398 				/* LDV_COMMENT_FUNCTION_CALL Function from field "remove" from driver structure with callbacks "pruss_driver" */
  399 				ldv_handler_precall();
  400 				pruss_remove( var_group1);
  401 				ldv_s_pruss_driver_platform_driver=0;
  402 
  403 				}
  404 
  405 			}
  406 
  407 			break;
  408 			default: break;
  409 
  410 		}
  411 
  412 	}
  413 
  414 	ldv_module_exit: 
  415 
  416 	/* LDV_COMMENT_FUNCTION_CALL Checks that all resources and locks are correctly released before the driver will be unloaded. */
  417 	ldv_final: ldv_check_final_state();
  418 
  419 	/* LDV_COMMENT_END_FUNCTION_CALL_SECTION */
  420 	return;
  421 
  422 }
  423 #endif
  424 
  425 /* LDV_COMMENT_END_MAIN */
  426 
  427 #line 15 "/work/ldvuser/ref_launch/work/current--X--drivers--X--defaultlinux-4.9-rc1.tar.xz--X--320_7a--X--cpachecker/linux-4.9-rc1.tar.xz/csd_deg_dscv/14083/dscv_tempdir/dscv/ri/320_7a/drivers/uio/uio_pruss.o.c.prepared"           1 
    2 #include <verifier/rcv.h>
    3 #include <kernel-model/ERR.inc>
    4 
    5 struct clk;
    6 
    7 
    8 /* LDV_COMMENT_CHANGE_STATE Initialize counter to zero. */
    9 int ldv_counter_clk = 0;
   10 
   11 /* LDV_COMMENT_MODEL_FUNCTION_DEFINITION(name='ldv_clk_disable_clk') Release. */
   12 void ldv_clk_disable_clk(struct clk *clk)
   13 {
   14     /* LDV_COMMENT_CHANGE_STATE Increase counter. */
   15     ldv_counter_clk = 0;
   16 }
   17 
   18 /* LDV_COMMENT_MODEL_FUNCTION_DEFINITION(name='ldv_clk_enable_clk') Reset counter. */
   19 int ldv_clk_enable_clk(void)
   20 {
   21  int retval = ldv_undef_int();
   22  if (!retval)
   23  {
   24   /* LDV_COMMENT_CHANGE_STATE Increase counter. */
   25   ldv_counter_clk = 1;
   26  }
   27  return retval;
   28 }
   29 
   30 
   31 /* LDV_COMMENT_CHANGE_STATE Initialize counter to zero. */
   32 int ldv_counter_pruss_clk_of_uio_pruss_dev = 0;
   33 
   34 /* LDV_COMMENT_MODEL_FUNCTION_DEFINITION(name='ldv_clk_disable_pruss_clk_of_uio_pruss_dev') Release. */
   35 void ldv_clk_disable_pruss_clk_of_uio_pruss_dev(struct clk *clk)
   36 {
   37     /* LDV_COMMENT_CHANGE_STATE Increase counter. */
   38     ldv_counter_pruss_clk_of_uio_pruss_dev = 0;
   39 }
   40 
   41 /* LDV_COMMENT_MODEL_FUNCTION_DEFINITION(name='ldv_clk_enable_pruss_clk_of_uio_pruss_dev') Reset counter. */
   42 int ldv_clk_enable_pruss_clk_of_uio_pruss_dev(void)
   43 {
   44  int retval = ldv_undef_int();
   45  if (!retval)
   46  {
   47   /* LDV_COMMENT_CHANGE_STATE Increase counter. */
   48   ldv_counter_pruss_clk_of_uio_pruss_dev = 1;
   49  }
   50  return retval;
   51 }
   52 
   53 
   54 /* LDV_COMMENT_MODEL_FUNCTION_DEFINITION(name='ldv_check_final_state') Check that all clk are freed at the end */
   55 void ldv_check_final_state(void)
   56 {
   57   /* LDV_COMMENT_ASSERT Spin 'clk' must be unlocked at the end */
   58   ldv_assert(ldv_counter_clk == 0);
   59   /* LDV_COMMENT_ASSERT Spin 'pruss_clk_of_uio_pruss_dev' must be unlocked at the end */
   60   ldv_assert(ldv_counter_pruss_clk_of_uio_pruss_dev == 0);
   61 }           1 #ifndef _LDV_ERR_
    2 #define _LDV_ERR_
    3 
    4 #include <linux/kernel.h>
    5 
    6 /* LDV_COMMENT_MODEL_FUNCTION_DEFENITION(name='ldv_is_err') This function return result of checking if pointer is impossible. */
    7 bool ldv_is_err(const void *ptr)
    8 {
    9 /*LDV_COMMENT_RETURN Return value of function ldv_is_err_val().*/
   10 	return ((unsigned long)ptr > LDV_PTR_MAX);
   11 }
   12 
   13 /* LDV_COMMENT_MODEL_FUNCTION_DEFENITION(name='ldv_err_ptr') This function return pointer. */
   14 void* ldv_err_ptr(long error)
   15 {
   16 /*LDV_COMMENT_RETURN Return error pointer.*/
   17 	return (void *)(LDV_PTR_MAX - error);
   18 }
   19 
   20 /* LDV_COMMENT_MODEL_FUNCTION_DEFENITION(name='ldv_ptr_err') This function return error if pointer is impossible. */
   21 long ldv_ptr_err(const void *ptr)
   22 {
   23 /*LDV_COMMENT_RETURN Return error code.*/
   24 	return (long)(LDV_PTR_MAX - (unsigned long)ptr);
   25 }
   26 
   27 /* LDV_COMMENT_MODEL_FUNCTION_DEFENITION(name='ldv_is_err_or_null') This function check if pointer is impossible or null. */
   28 bool ldv_is_err_or_null(const void *ptr)
   29 {
   30 /*LDV_COMMENT_RETURN Return 0 if pointer is possible and not zero, and 1 in other cases*/
   31 	return !ptr || ldv_is_err((unsigned long)ptr);
   32 }
   33 
   34 #endif /* _LDV_ERR_ */           1 #ifndef _LDV_RCV_H_
    2 #define _LDV_RCV_H_
    3 
    4 /* If expr evaluates to zero, ldv_assert() causes a program to reach the error
    5    label like the standard assert(). */
    6 #define ldv_assert(expr) ((expr) ? 0 : ldv_error())
    7 
    8 /* The error label wrapper. It is used because of some static verifiers (like
    9    BLAST) don't accept multiple error labels through a program. */
   10 static inline void ldv_error(void)
   11 {
   12   LDV_ERROR: goto LDV_ERROR;
   13 }
   14 
   15 /* If expr evaluates to zero, ldv_assume() causes an infinite loop that is
   16    avoided by verifiers. */
   17 #define ldv_assume(expr) ((expr) ? 0 : ldv_stop())
   18 
   19 /* Infinite loop, that causes verifiers to skip such paths. */
   20 static inline void ldv_stop(void) {
   21   LDV_STOP: goto LDV_STOP;
   22 }
   23 
   24 /* Special nondeterministic functions. */
   25 int ldv_undef_int(void);
   26 void *ldv_undef_ptr(void);
   27 unsigned long ldv_undef_ulong(void);
   28 long ldv_undef_long(void);
   29 /* Return nondeterministic negative integer number. */
   30 static inline int ldv_undef_int_negative(void)
   31 {
   32   int ret = ldv_undef_int();
   33 
   34   ldv_assume(ret < 0);
   35 
   36   return ret;
   37 }
   38 /* Return nondeterministic nonpositive integer number. */
   39 static inline int ldv_undef_int_nonpositive(void)
   40 {
   41   int ret = ldv_undef_int();
   42 
   43   ldv_assume(ret <= 0);
   44 
   45   return ret;
   46 }
   47 
   48 /* Add explicit model for __builin_expect GCC function. Without the model a
   49    return value will be treated as nondetermined by verifiers. */
   50 static inline long __builtin_expect(long exp, long c)
   51 {
   52   return exp;
   53 }
   54 
   55 /* This function causes the program to exit abnormally. GCC implements this
   56 function by using a target-dependent mechanism (such as intentionally executing
   57 an illegal instruction) or by calling abort. The mechanism used may vary from
   58 release to release so you should not rely on any particular implementation.
   59 http://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html */
   60 static inline void __builtin_trap(void)
   61 {
   62   ldv_assert(0);
   63 }
   64 
   65 /* The constant is for simulating an error of ldv_undef_ptr() function. */
   66 #define LDV_PTR_MAX 2012
   67 
   68 #endif /* _LDV_RCV_H_ */           1 /*
    2  * device.h - generic, centralized driver model
    3  *
    4  * Copyright (c) 2001-2003 Patrick Mochel <mochel@osdl.org>
    5  * Copyright (c) 2004-2009 Greg Kroah-Hartman <gregkh@suse.de>
    6  * Copyright (c) 2008-2009 Novell Inc.
    7  *
    8  * This file is released under the GPLv2
    9  *
   10  * See Documentation/driver-model/ for more information.
   11  */
   12 
   13 #ifndef _DEVICE_H_
   14 #define _DEVICE_H_
   15 
   16 #include <linux/ioport.h>
   17 #include <linux/kobject.h>
   18 #include <linux/klist.h>
   19 #include <linux/list.h>
   20 #include <linux/lockdep.h>
   21 #include <linux/compiler.h>
   22 #include <linux/types.h>
   23 #include <linux/mutex.h>
   24 #include <linux/pinctrl/devinfo.h>
   25 #include <linux/pm.h>
   26 #include <linux/atomic.h>
   27 #include <linux/ratelimit.h>
   28 #include <linux/uidgid.h>
   29 #include <linux/gfp.h>
   30 #include <asm/device.h>
   31 
   32 struct device;
   33 struct device_private;
   34 struct device_driver;
   35 struct driver_private;
   36 struct module;
   37 struct class;
   38 struct subsys_private;
   39 struct bus_type;
   40 struct device_node;
   41 struct fwnode_handle;
   42 struct iommu_ops;
   43 struct iommu_group;
   44 struct iommu_fwspec;
   45 
   46 struct bus_attribute {
   47 	struct attribute	attr;
   48 	ssize_t (*show)(struct bus_type *bus, char *buf);
   49 	ssize_t (*store)(struct bus_type *bus, const char *buf, size_t count);
   50 };
   51 
   52 #define BUS_ATTR(_name, _mode, _show, _store)	\
   53 	struct bus_attribute bus_attr_##_name = __ATTR(_name, _mode, _show, _store)
   54 #define BUS_ATTR_RW(_name) \
   55 	struct bus_attribute bus_attr_##_name = __ATTR_RW(_name)
   56 #define BUS_ATTR_RO(_name) \
   57 	struct bus_attribute bus_attr_##_name = __ATTR_RO(_name)
   58 
   59 extern int __must_check bus_create_file(struct bus_type *,
   60 					struct bus_attribute *);
   61 extern void bus_remove_file(struct bus_type *, struct bus_attribute *);
   62 
   63 /**
   64  * struct bus_type - The bus type of the device
   65  *
   66  * @name:	The name of the bus.
   67  * @dev_name:	Used for subsystems to enumerate devices like ("foo%u", dev->id).
   68  * @dev_root:	Default device to use as the parent.
   69  * @dev_attrs:	Default attributes of the devices on the bus.
   70  * @bus_groups:	Default attributes of the bus.
   71  * @dev_groups:	Default attributes of the devices on the bus.
   72  * @drv_groups: Default attributes of the device drivers on the bus.
   73  * @match:	Called, perhaps multiple times, whenever a new device or driver
   74  *		is added for this bus. It should return a positive value if the
   75  *		given device can be handled by the given driver and zero
   76  *		otherwise. It may also return error code if determining that
   77  *		the driver supports the device is not possible. In case of
   78  *		-EPROBE_DEFER it will queue the device for deferred probing.
   79  * @uevent:	Called when a device is added, removed, or a few other things
   80  *		that generate uevents to add the environment variables.
   81  * @probe:	Called when a new device or driver add to this bus, and callback
   82  *		the specific driver's probe to initial the matched device.
   83  * @remove:	Called when a device removed from this bus.
   84  * @shutdown:	Called at shut-down time to quiesce the device.
   85  *
   86  * @online:	Called to put the device back online (after offlining it).
   87  * @offline:	Called to put the device offline for hot-removal. May fail.
   88  *
   89  * @suspend:	Called when a device on this bus wants to go to sleep mode.
   90  * @resume:	Called to bring a device on this bus out of sleep mode.
   91  * @pm:		Power management operations of this bus, callback the specific
   92  *		device driver's pm-ops.
   93  * @iommu_ops:  IOMMU specific operations for this bus, used to attach IOMMU
   94  *              driver implementations to a bus and allow the driver to do
   95  *              bus-specific setup
   96  * @p:		The private data of the driver core, only the driver core can
   97  *		touch this.
   98  * @lock_key:	Lock class key for use by the lock validator
   99  *
  100  * A bus is a channel between the processor and one or more devices. For the
  101  * purposes of the device model, all devices are connected via a bus, even if
  102  * it is an internal, virtual, "platform" bus. Buses can plug into each other.
  103  * A USB controller is usually a PCI device, for example. The device model
  104  * represents the actual connections between buses and the devices they control.
  105  * A bus is represented by the bus_type structure. It contains the name, the
  106  * default attributes, the bus' methods, PM operations, and the driver core's
  107  * private data.
  108  */
  109 struct bus_type {
  110 	const char		*name;
  111 	const char		*dev_name;
  112 	struct device		*dev_root;
  113 	struct device_attribute	*dev_attrs;	/* use dev_groups instead */
  114 	const struct attribute_group **bus_groups;
  115 	const struct attribute_group **dev_groups;
  116 	const struct attribute_group **drv_groups;
  117 
  118 	int (*match)(struct device *dev, struct device_driver *drv);
  119 	int (*uevent)(struct device *dev, struct kobj_uevent_env *env);
  120 	int (*probe)(struct device *dev);
  121 	int (*remove)(struct device *dev);
  122 	void (*shutdown)(struct device *dev);
  123 
  124 	int (*online)(struct device *dev);
  125 	int (*offline)(struct device *dev);
  126 
  127 	int (*suspend)(struct device *dev, pm_message_t state);
  128 	int (*resume)(struct device *dev);
  129 
  130 	const struct dev_pm_ops *pm;
  131 
  132 	const struct iommu_ops *iommu_ops;
  133 
  134 	struct subsys_private *p;
  135 	struct lock_class_key lock_key;
  136 };
  137 
  138 extern int __must_check bus_register(struct bus_type *bus);
  139 
  140 extern void bus_unregister(struct bus_type *bus);
  141 
  142 extern int __must_check bus_rescan_devices(struct bus_type *bus);
  143 
  144 /* iterator helpers for buses */
  145 struct subsys_dev_iter {
  146 	struct klist_iter		ki;
  147 	const struct device_type	*type;
  148 };
  149 void subsys_dev_iter_init(struct subsys_dev_iter *iter,
  150 			 struct bus_type *subsys,
  151 			 struct device *start,
  152 			 const struct device_type *type);
  153 struct device *subsys_dev_iter_next(struct subsys_dev_iter *iter);
  154 void subsys_dev_iter_exit(struct subsys_dev_iter *iter);
  155 
  156 int bus_for_each_dev(struct bus_type *bus, struct device *start, void *data,
  157 		     int (*fn)(struct device *dev, void *data));
  158 struct device *bus_find_device(struct bus_type *bus, struct device *start,
  159 			       void *data,
  160 			       int (*match)(struct device *dev, void *data));
  161 struct device *bus_find_device_by_name(struct bus_type *bus,
  162 				       struct device *start,
  163 				       const char *name);
  164 struct device *subsys_find_device_by_id(struct bus_type *bus, unsigned int id,
  165 					struct device *hint);
  166 int bus_for_each_drv(struct bus_type *bus, struct device_driver *start,
  167 		     void *data, int (*fn)(struct device_driver *, void *));
  168 void bus_sort_breadthfirst(struct bus_type *bus,
  169 			   int (*compare)(const struct device *a,
  170 					  const struct device *b));
  171 /*
  172  * Bus notifiers: Get notified of addition/removal of devices
  173  * and binding/unbinding of drivers to devices.
  174  * In the long run, it should be a replacement for the platform
  175  * notify hooks.
  176  */
  177 struct notifier_block;
  178 
  179 extern int bus_register_notifier(struct bus_type *bus,
  180 				 struct notifier_block *nb);
  181 extern int bus_unregister_notifier(struct bus_type *bus,
  182 				   struct notifier_block *nb);
  183 
  184 /* All 4 notifers below get called with the target struct device *
  185  * as an argument. Note that those functions are likely to be called
  186  * with the device lock held in the core, so be careful.
  187  */
  188 #define BUS_NOTIFY_ADD_DEVICE		0x00000001 /* device added */
  189 #define BUS_NOTIFY_DEL_DEVICE		0x00000002 /* device to be removed */
  190 #define BUS_NOTIFY_REMOVED_DEVICE	0x00000003 /* device removed */
  191 #define BUS_NOTIFY_BIND_DRIVER		0x00000004 /* driver about to be
  192 						      bound */
  193 #define BUS_NOTIFY_BOUND_DRIVER		0x00000005 /* driver bound to device */
  194 #define BUS_NOTIFY_UNBIND_DRIVER	0x00000006 /* driver about to be
  195 						      unbound */
  196 #define BUS_NOTIFY_UNBOUND_DRIVER	0x00000007 /* driver is unbound
  197 						      from the device */
  198 #define BUS_NOTIFY_DRIVER_NOT_BOUND	0x00000008 /* driver fails to be bound */
  199 
  200 extern struct kset *bus_get_kset(struct bus_type *bus);
  201 extern struct klist *bus_get_device_klist(struct bus_type *bus);
  202 
  203 /**
  204  * enum probe_type - device driver probe type to try
  205  *	Device drivers may opt in for special handling of their
  206  *	respective probe routines. This tells the core what to
  207  *	expect and prefer.
  208  *
  209  * @PROBE_DEFAULT_STRATEGY: Used by drivers that work equally well
  210  *	whether probed synchronously or asynchronously.
  211  * @PROBE_PREFER_ASYNCHRONOUS: Drivers for "slow" devices which
  212  *	probing order is not essential for booting the system may
  213  *	opt into executing their probes asynchronously.
  214  * @PROBE_FORCE_SYNCHRONOUS: Use this to annotate drivers that need
  215  *	their probe routines to run synchronously with driver and
  216  *	device registration (with the exception of -EPROBE_DEFER
  217  *	handling - re-probing always ends up being done asynchronously).
  218  *
  219  * Note that the end goal is to switch the kernel to use asynchronous
  220  * probing by default, so annotating drivers with
  221  * %PROBE_PREFER_ASYNCHRONOUS is a temporary measure that allows us
  222  * to speed up boot process while we are validating the rest of the
  223  * drivers.
  224  */
  225 enum probe_type {
  226 	PROBE_DEFAULT_STRATEGY,
  227 	PROBE_PREFER_ASYNCHRONOUS,
  228 	PROBE_FORCE_SYNCHRONOUS,
  229 };
  230 
  231 /**
  232  * struct device_driver - The basic device driver structure
  233  * @name:	Name of the device driver.
  234  * @bus:	The bus which the device of this driver belongs to.
  235  * @owner:	The module owner.
  236  * @mod_name:	Used for built-in modules.
  237  * @suppress_bind_attrs: Disables bind/unbind via sysfs.
  238  * @probe_type:	Type of the probe (synchronous or asynchronous) to use.
  239  * @of_match_table: The open firmware table.
  240  * @acpi_match_table: The ACPI match table.
  241  * @probe:	Called to query the existence of a specific device,
  242  *		whether this driver can work with it, and bind the driver
  243  *		to a specific device.
  244  * @remove:	Called when the device is removed from the system to
  245  *		unbind a device from this driver.
  246  * @shutdown:	Called at shut-down time to quiesce the device.
  247  * @suspend:	Called to put the device to sleep mode. Usually to a
  248  *		low power state.
  249  * @resume:	Called to bring a device from sleep mode.
  250  * @groups:	Default attributes that get created by the driver core
  251  *		automatically.
  252  * @pm:		Power management operations of the device which matched
  253  *		this driver.
  254  * @p:		Driver core's private data, no one other than the driver
  255  *		core can touch this.
  256  *
  257  * The device driver-model tracks all of the drivers known to the system.
  258  * The main reason for this tracking is to enable the driver core to match
  259  * up drivers with new devices. Once drivers are known objects within the
  260  * system, however, a number of other things become possible. Device drivers
  261  * can export information and configuration variables that are independent
  262  * of any specific device.
  263  */
  264 struct device_driver {
  265 	const char		*name;
  266 	struct bus_type		*bus;
  267 
  268 	struct module		*owner;
  269 	const char		*mod_name;	/* used for built-in modules */
  270 
  271 	bool suppress_bind_attrs;	/* disables bind/unbind via sysfs */
  272 	enum probe_type probe_type;
  273 
  274 	const struct of_device_id	*of_match_table;
  275 	const struct acpi_device_id	*acpi_match_table;
  276 
  277 	int (*probe) (struct device *dev);
  278 	int (*remove) (struct device *dev);
  279 	void (*shutdown) (struct device *dev);
  280 	int (*suspend) (struct device *dev, pm_message_t state);
  281 	int (*resume) (struct device *dev);
  282 	const struct attribute_group **groups;
  283 
  284 	const struct dev_pm_ops *pm;
  285 
  286 	struct driver_private *p;
  287 };
  288 
  289 
  290 extern int __must_check driver_register(struct device_driver *drv);
  291 extern void driver_unregister(struct device_driver *drv);
  292 
  293 extern struct device_driver *driver_find(const char *name,
  294 					 struct bus_type *bus);
  295 extern int driver_probe_done(void);
  296 extern void wait_for_device_probe(void);
  297 
  298 
  299 /* sysfs interface for exporting driver attributes */
  300 
  301 struct driver_attribute {
  302 	struct attribute attr;
  303 	ssize_t (*show)(struct device_driver *driver, char *buf);
  304 	ssize_t (*store)(struct device_driver *driver, const char *buf,
  305 			 size_t count);
  306 };
  307 
  308 #define DRIVER_ATTR(_name, _mode, _show, _store) \
  309 	struct driver_attribute driver_attr_##_name = __ATTR(_name, _mode, _show, _store)
  310 #define DRIVER_ATTR_RW(_name) \
  311 	struct driver_attribute driver_attr_##_name = __ATTR_RW(_name)
  312 #define DRIVER_ATTR_RO(_name) \
  313 	struct driver_attribute driver_attr_##_name = __ATTR_RO(_name)
  314 #define DRIVER_ATTR_WO(_name) \
  315 	struct driver_attribute driver_attr_##_name = __ATTR_WO(_name)
  316 
  317 extern int __must_check driver_create_file(struct device_driver *driver,
  318 					const struct driver_attribute *attr);
  319 extern void driver_remove_file(struct device_driver *driver,
  320 			       const struct driver_attribute *attr);
  321 
  322 extern int __must_check driver_for_each_device(struct device_driver *drv,
  323 					       struct device *start,
  324 					       void *data,
  325 					       int (*fn)(struct device *dev,
  326 							 void *));
  327 struct device *driver_find_device(struct device_driver *drv,
  328 				  struct device *start, void *data,
  329 				  int (*match)(struct device *dev, void *data));
  330 
  331 /**
  332  * struct subsys_interface - interfaces to device functions
  333  * @name:       name of the device function
  334  * @subsys:     subsytem of the devices to attach to
  335  * @node:       the list of functions registered at the subsystem
  336  * @add_dev:    device hookup to device function handler
  337  * @remove_dev: device hookup to device function handler
  338  *
  339  * Simple interfaces attached to a subsystem. Multiple interfaces can
  340  * attach to a subsystem and its devices. Unlike drivers, they do not
  341  * exclusively claim or control devices. Interfaces usually represent
  342  * a specific functionality of a subsystem/class of devices.
  343  */
  344 struct subsys_interface {
  345 	const char *name;
  346 	struct bus_type *subsys;
  347 	struct list_head node;
  348 	int (*add_dev)(struct device *dev, struct subsys_interface *sif);
  349 	void (*remove_dev)(struct device *dev, struct subsys_interface *sif);
  350 };
  351 
  352 int subsys_interface_register(struct subsys_interface *sif);
  353 void subsys_interface_unregister(struct subsys_interface *sif);
  354 
  355 int subsys_system_register(struct bus_type *subsys,
  356 			   const struct attribute_group **groups);
  357 int subsys_virtual_register(struct bus_type *subsys,
  358 			    const struct attribute_group **groups);
  359 
  360 /**
  361  * struct class - device classes
  362  * @name:	Name of the class.
  363  * @owner:	The module owner.
  364  * @class_attrs: Default attributes of this class.
  365  * @dev_groups:	Default attributes of the devices that belong to the class.
  366  * @dev_kobj:	The kobject that represents this class and links it into the hierarchy.
  367  * @dev_uevent:	Called when a device is added, removed from this class, or a
  368  *		few other things that generate uevents to add the environment
  369  *		variables.
  370  * @devnode:	Callback to provide the devtmpfs.
  371  * @class_release: Called to release this class.
  372  * @dev_release: Called to release the device.
  373  * @suspend:	Used to put the device to sleep mode, usually to a low power
  374  *		state.
  375  * @resume:	Used to bring the device from the sleep mode.
  376  * @ns_type:	Callbacks so sysfs can detemine namespaces.
  377  * @namespace:	Namespace of the device belongs to this class.
  378  * @pm:		The default device power management operations of this class.
  379  * @p:		The private data of the driver core, no one other than the
  380  *		driver core can touch this.
  381  *
  382  * A class is a higher-level view of a device that abstracts out low-level
  383  * implementation details. Drivers may see a SCSI disk or an ATA disk, but,
  384  * at the class level, they are all simply disks. Classes allow user space
  385  * to work with devices based on what they do, rather than how they are
  386  * connected or how they work.
  387  */
  388 struct class {
  389 	const char		*name;
  390 	struct module		*owner;
  391 
  392 	struct class_attribute		*class_attrs;
  393 	const struct attribute_group	**dev_groups;
  394 	struct kobject			*dev_kobj;
  395 
  396 	int (*dev_uevent)(struct device *dev, struct kobj_uevent_env *env);
  397 	char *(*devnode)(struct device *dev, umode_t *mode);
  398 
  399 	void (*class_release)(struct class *class);
  400 	void (*dev_release)(struct device *dev);
  401 
  402 	int (*suspend)(struct device *dev, pm_message_t state);
  403 	int (*resume)(struct device *dev);
  404 
  405 	const struct kobj_ns_type_operations *ns_type;
  406 	const void *(*namespace)(struct device *dev);
  407 
  408 	const struct dev_pm_ops *pm;
  409 
  410 	struct subsys_private *p;
  411 };
  412 
  413 struct class_dev_iter {
  414 	struct klist_iter		ki;
  415 	const struct device_type	*type;
  416 };
  417 
  418 extern struct kobject *sysfs_dev_block_kobj;
  419 extern struct kobject *sysfs_dev_char_kobj;
  420 extern int __must_check __class_register(struct class *class,
  421 					 struct lock_class_key *key);
  422 extern void class_unregister(struct class *class);
  423 
  424 /* This is a #define to keep the compiler from merging different
  425  * instances of the __key variable */
  426 #define class_register(class)			\
  427 ({						\
  428 	static struct lock_class_key __key;	\
  429 	__class_register(class, &__key);	\
  430 })
  431 
  432 struct class_compat;
  433 struct class_compat *class_compat_register(const char *name);
  434 void class_compat_unregister(struct class_compat *cls);
  435 int class_compat_create_link(struct class_compat *cls, struct device *dev,
  436 			     struct device *device_link);
  437 void class_compat_remove_link(struct class_compat *cls, struct device *dev,
  438 			      struct device *device_link);
  439 
  440 extern void class_dev_iter_init(struct class_dev_iter *iter,
  441 				struct class *class,
  442 				struct device *start,
  443 				const struct device_type *type);
  444 extern struct device *class_dev_iter_next(struct class_dev_iter *iter);
  445 extern void class_dev_iter_exit(struct class_dev_iter *iter);
  446 
  447 extern int class_for_each_device(struct class *class, struct device *start,
  448 				 void *data,
  449 				 int (*fn)(struct device *dev, void *data));
  450 extern struct device *class_find_device(struct class *class,
  451 					struct device *start, const void *data,
  452 					int (*match)(struct device *, const void *));
  453 
  454 struct class_attribute {
  455 	struct attribute attr;
  456 	ssize_t (*show)(struct class *class, struct class_attribute *attr,
  457 			char *buf);
  458 	ssize_t (*store)(struct class *class, struct class_attribute *attr,
  459 			const char *buf, size_t count);
  460 };
  461 
  462 #define CLASS_ATTR(_name, _mode, _show, _store) \
  463 	struct class_attribute class_attr_##_name = __ATTR(_name, _mode, _show, _store)
  464 #define CLASS_ATTR_RW(_name) \
  465 	struct class_attribute class_attr_##_name = __ATTR_RW(_name)
  466 #define CLASS_ATTR_RO(_name) \
  467 	struct class_attribute class_attr_##_name = __ATTR_RO(_name)
  468 
  469 extern int __must_check class_create_file_ns(struct class *class,
  470 					     const struct class_attribute *attr,
  471 					     const void *ns);
  472 extern void class_remove_file_ns(struct class *class,
  473 				 const struct class_attribute *attr,
  474 				 const void *ns);
  475 
  476 static inline int __must_check class_create_file(struct class *class,
  477 					const struct class_attribute *attr)
  478 {
  479 	return class_create_file_ns(class, attr, NULL);
  480 }
  481 
  482 static inline void class_remove_file(struct class *class,
  483 				     const struct class_attribute *attr)
  484 {
  485 	return class_remove_file_ns(class, attr, NULL);
  486 }
  487 
  488 /* Simple class attribute that is just a static string */
  489 struct class_attribute_string {
  490 	struct class_attribute attr;
  491 	char *str;
  492 };
  493 
  494 /* Currently read-only only */
  495 #define _CLASS_ATTR_STRING(_name, _mode, _str) \
  496 	{ __ATTR(_name, _mode, show_class_attr_string, NULL), _str }
  497 #define CLASS_ATTR_STRING(_name, _mode, _str) \
  498 	struct class_attribute_string class_attr_##_name = \
  499 		_CLASS_ATTR_STRING(_name, _mode, _str)
  500 
  501 extern ssize_t show_class_attr_string(struct class *class, struct class_attribute *attr,
  502                         char *buf);
  503 
  504 struct class_interface {
  505 	struct list_head	node;
  506 	struct class		*class;
  507 
  508 	int (*add_dev)		(struct device *, struct class_interface *);
  509 	void (*remove_dev)	(struct device *, struct class_interface *);
  510 };
  511 
  512 extern int __must_check class_interface_register(struct class_interface *);
  513 extern void class_interface_unregister(struct class_interface *);
  514 
  515 extern struct class * __must_check __class_create(struct module *owner,
  516 						  const char *name,
  517 						  struct lock_class_key *key);
  518 extern void class_destroy(struct class *cls);
  519 
  520 /* This is a #define to keep the compiler from merging different
  521  * instances of the __key variable */
  522 #define class_create(owner, name)		\
  523 ({						\
  524 	static struct lock_class_key __key;	\
  525 	__class_create(owner, name, &__key);	\
  526 })
  527 
  528 /*
  529  * The type of device, "struct device" is embedded in. A class
  530  * or bus can contain devices of different types
  531  * like "partitions" and "disks", "mouse" and "event".
  532  * This identifies the device type and carries type-specific
  533  * information, equivalent to the kobj_type of a kobject.
  534  * If "name" is specified, the uevent will contain it in
  535  * the DEVTYPE variable.
  536  */
  537 struct device_type {
  538 	const char *name;
  539 	const struct attribute_group **groups;
  540 	int (*uevent)(struct device *dev, struct kobj_uevent_env *env);
  541 	char *(*devnode)(struct device *dev, umode_t *mode,
  542 			 kuid_t *uid, kgid_t *gid);
  543 	void (*release)(struct device *dev);
  544 
  545 	const struct dev_pm_ops *pm;
  546 };
  547 
  548 /* interface for exporting device attributes */
  549 struct device_attribute {
  550 	struct attribute	attr;
  551 	ssize_t (*show)(struct device *dev, struct device_attribute *attr,
  552 			char *buf);
  553 	ssize_t (*store)(struct device *dev, struct device_attribute *attr,
  554 			 const char *buf, size_t count);
  555 };
  556 
  557 struct dev_ext_attribute {
  558 	struct device_attribute attr;
  559 	void *var;
  560 };
  561 
  562 ssize_t device_show_ulong(struct device *dev, struct device_attribute *attr,
  563 			  char *buf);
  564 ssize_t device_store_ulong(struct device *dev, struct device_attribute *attr,
  565 			   const char *buf, size_t count);
  566 ssize_t device_show_int(struct device *dev, struct device_attribute *attr,
  567 			char *buf);
  568 ssize_t device_store_int(struct device *dev, struct device_attribute *attr,
  569 			 const char *buf, size_t count);
  570 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
  571 			char *buf);
  572 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
  573 			 const char *buf, size_t count);
  574 
  575 #define DEVICE_ATTR(_name, _mode, _show, _store) \
  576 	struct device_attribute dev_attr_##_name = __ATTR(_name, _mode, _show, _store)
  577 #define DEVICE_ATTR_RW(_name) \
  578 	struct device_attribute dev_attr_##_name = __ATTR_RW(_name)
  579 #define DEVICE_ATTR_RO(_name) \
  580 	struct device_attribute dev_attr_##_name = __ATTR_RO(_name)
  581 #define DEVICE_ATTR_WO(_name) \
  582 	struct device_attribute dev_attr_##_name = __ATTR_WO(_name)
  583 #define DEVICE_ULONG_ATTR(_name, _mode, _var) \
  584 	struct dev_ext_attribute dev_attr_##_name = \
  585 		{ __ATTR(_name, _mode, device_show_ulong, device_store_ulong), &(_var) }
  586 #define DEVICE_INT_ATTR(_name, _mode, _var) \
  587 	struct dev_ext_attribute dev_attr_##_name = \
  588 		{ __ATTR(_name, _mode, device_show_int, device_store_int), &(_var) }
  589 #define DEVICE_BOOL_ATTR(_name, _mode, _var) \
  590 	struct dev_ext_attribute dev_attr_##_name = \
  591 		{ __ATTR(_name, _mode, device_show_bool, device_store_bool), &(_var) }
  592 #define DEVICE_ATTR_IGNORE_LOCKDEP(_name, _mode, _show, _store) \
  593 	struct device_attribute dev_attr_##_name =		\
  594 		__ATTR_IGNORE_LOCKDEP(_name, _mode, _show, _store)
  595 
  596 extern int device_create_file(struct device *device,
  597 			      const struct device_attribute *entry);
  598 extern void device_remove_file(struct device *dev,
  599 			       const struct device_attribute *attr);
  600 extern bool device_remove_file_self(struct device *dev,
  601 				    const struct device_attribute *attr);
  602 extern int __must_check device_create_bin_file(struct device *dev,
  603 					const struct bin_attribute *attr);
  604 extern void device_remove_bin_file(struct device *dev,
  605 				   const struct bin_attribute *attr);
  606 
  607 /* device resource management */
  608 typedef void (*dr_release_t)(struct device *dev, void *res);
  609 typedef int (*dr_match_t)(struct device *dev, void *res, void *match_data);
  610 
  611 #ifdef CONFIG_DEBUG_DEVRES
  612 extern void *__devres_alloc_node(dr_release_t release, size_t size, gfp_t gfp,
  613 				 int nid, const char *name) __malloc;
  614 #define devres_alloc(release, size, gfp) \
  615 	__devres_alloc_node(release, size, gfp, NUMA_NO_NODE, #release)
  616 #define devres_alloc_node(release, size, gfp, nid) \
  617 	__devres_alloc_node(release, size, gfp, nid, #release)
  618 #else
  619 extern void *devres_alloc_node(dr_release_t release, size_t size, gfp_t gfp,
  620 			       int nid) __malloc;
  621 static inline void *devres_alloc(dr_release_t release, size_t size, gfp_t gfp)
  622 {
  623 	return devres_alloc_node(release, size, gfp, NUMA_NO_NODE);
  624 }
  625 #endif
  626 
  627 extern void devres_for_each_res(struct device *dev, dr_release_t release,
  628 				dr_match_t match, void *match_data,
  629 				void (*fn)(struct device *, void *, void *),
  630 				void *data);
  631 extern void devres_free(void *res);
  632 extern void devres_add(struct device *dev, void *res);
  633 extern void *devres_find(struct device *dev, dr_release_t release,
  634 			 dr_match_t match, void *match_data);
  635 extern void *devres_get(struct device *dev, void *new_res,
  636 			dr_match_t match, void *match_data);
  637 extern void *devres_remove(struct device *dev, dr_release_t release,
  638 			   dr_match_t match, void *match_data);
  639 extern int devres_destroy(struct device *dev, dr_release_t release,
  640 			  dr_match_t match, void *match_data);
  641 extern int devres_release(struct device *dev, dr_release_t release,
  642 			  dr_match_t match, void *match_data);
  643 
  644 /* devres group */
  645 extern void * __must_check devres_open_group(struct device *dev, void *id,
  646 					     gfp_t gfp);
  647 extern void devres_close_group(struct device *dev, void *id);
  648 extern void devres_remove_group(struct device *dev, void *id);
  649 extern int devres_release_group(struct device *dev, void *id);
  650 
  651 /* managed devm_k.alloc/kfree for device drivers */
  652 extern void *devm_kmalloc(struct device *dev, size_t size, gfp_t gfp) __malloc;
  653 extern __printf(3, 0)
  654 char *devm_kvasprintf(struct device *dev, gfp_t gfp, const char *fmt,
  655 		      va_list ap) __malloc;
  656 extern __printf(3, 4)
  657 char *devm_kasprintf(struct device *dev, gfp_t gfp, const char *fmt, ...) __malloc;
  658 static inline void *devm_kzalloc(struct device *dev, size_t size, gfp_t gfp)
  659 {
  660 	return devm_kmalloc(dev, size, gfp | __GFP_ZERO);
  661 }
  662 static inline void *devm_kmalloc_array(struct device *dev,
  663 				       size_t n, size_t size, gfp_t flags)
  664 {
  665 	if (size != 0 && n > SIZE_MAX / size)
  666 		return NULL;
  667 	return devm_kmalloc(dev, n * size, flags);
  668 }
  669 static inline void *devm_kcalloc(struct device *dev,
  670 				 size_t n, size_t size, gfp_t flags)
  671 {
  672 	return devm_kmalloc_array(dev, n, size, flags | __GFP_ZERO);
  673 }
  674 extern void devm_kfree(struct device *dev, void *p);
  675 extern char *devm_kstrdup(struct device *dev, const char *s, gfp_t gfp) __malloc;
  676 extern void *devm_kmemdup(struct device *dev, const void *src, size_t len,
  677 			  gfp_t gfp);
  678 
  679 extern unsigned long devm_get_free_pages(struct device *dev,
  680 					 gfp_t gfp_mask, unsigned int order);
  681 extern void devm_free_pages(struct device *dev, unsigned long addr);
  682 
  683 void __iomem *devm_ioremap_resource(struct device *dev, struct resource *res);
  684 
  685 /* allows to add/remove a custom action to devres stack */
  686 int devm_add_action(struct device *dev, void (*action)(void *), void *data);
  687 void devm_remove_action(struct device *dev, void (*action)(void *), void *data);
  688 
  689 static inline int devm_add_action_or_reset(struct device *dev,
  690 					   void (*action)(void *), void *data)
  691 {
  692 	int ret;
  693 
  694 	ret = devm_add_action(dev, action, data);
  695 	if (ret)
  696 		action(data);
  697 
  698 	return ret;
  699 }
  700 
  701 struct device_dma_parameters {
  702 	/*
  703 	 * a low level driver may set these to teach IOMMU code about
  704 	 * sg limitations.
  705 	 */
  706 	unsigned int max_segment_size;
  707 	unsigned long segment_boundary_mask;
  708 };
  709 
  710 /**
  711  * struct device - The basic device structure
  712  * @parent:	The device's "parent" device, the device to which it is attached.
  713  * 		In most cases, a parent device is some sort of bus or host
  714  * 		controller. If parent is NULL, the device, is a top-level device,
  715  * 		which is not usually what you want.
  716  * @p:		Holds the private data of the driver core portions of the device.
  717  * 		See the comment of the struct device_private for detail.
  718  * @kobj:	A top-level, abstract class from which other classes are derived.
  719  * @init_name:	Initial name of the device.
  720  * @type:	The type of device.
  721  * 		This identifies the device type and carries type-specific
  722  * 		information.
  723  * @mutex:	Mutex to synchronize calls to its driver.
  724  * @bus:	Type of bus device is on.
  725  * @driver:	Which driver has allocated this
  726  * @platform_data: Platform data specific to the device.
  727  * 		Example: For devices on custom boards, as typical of embedded
  728  * 		and SOC based hardware, Linux often uses platform_data to point
  729  * 		to board-specific structures describing devices and how they
  730  * 		are wired.  That can include what ports are available, chip
  731  * 		variants, which GPIO pins act in what additional roles, and so
  732  * 		on.  This shrinks the "Board Support Packages" (BSPs) and
  733  * 		minimizes board-specific #ifdefs in drivers.
  734  * @driver_data: Private pointer for driver specific info.
  735  * @power:	For device power management.
  736  * 		See Documentation/power/devices.txt for details.
  737  * @pm_domain:	Provide callbacks that are executed during system suspend,
  738  * 		hibernation, system resume and during runtime PM transitions
  739  * 		along with subsystem-level and driver-level callbacks.
  740  * @pins:	For device pin management.
  741  *		See Documentation/pinctrl.txt for details.
  742  * @msi_list:	Hosts MSI descriptors
  743  * @msi_domain: The generic MSI domain this device is using.
  744  * @numa_node:	NUMA node this device is close to.
  745  * @dma_mask:	Dma mask (if dma'ble device).
  746  * @coherent_dma_mask: Like dma_mask, but for alloc_coherent mapping as not all
  747  * 		hardware supports 64-bit addresses for consistent allocations
  748  * 		such descriptors.
  749  * @dma_pfn_offset: offset of DMA memory range relatively of RAM
  750  * @dma_parms:	A low level driver may set these to teach IOMMU code about
  751  * 		segment limitations.
  752  * @dma_pools:	Dma pools (if dma'ble device).
  753  * @dma_mem:	Internal for coherent mem override.
  754  * @cma_area:	Contiguous memory area for dma allocations
  755  * @archdata:	For arch-specific additions.
  756  * @of_node:	Associated device tree node.
  757  * @fwnode:	Associated device node supplied by platform firmware.
  758  * @devt:	For creating the sysfs "dev".
  759  * @id:		device instance
  760  * @devres_lock: Spinlock to protect the resource of the device.
  761  * @devres_head: The resources list of the device.
  762  * @knode_class: The node used to add the device to the class list.
  763  * @class:	The class of the device.
  764  * @groups:	Optional attribute groups.
  765  * @release:	Callback to free the device after all references have
  766  * 		gone away. This should be set by the allocator of the
  767  * 		device (i.e. the bus driver that discovered the device).
  768  * @iommu_group: IOMMU group the device belongs to.
  769  * @iommu_fwspec: IOMMU-specific properties supplied by firmware.
  770  *
  771  * @offline_disabled: If set, the device is permanently online.
  772  * @offline:	Set after successful invocation of bus type's .offline().
  773  *
  774  * At the lowest level, every device in a Linux system is represented by an
  775  * instance of struct device. The device structure contains the information
  776  * that the device model core needs to model the system. Most subsystems,
  777  * however, track additional information about the devices they host. As a
  778  * result, it is rare for devices to be represented by bare device structures;
  779  * instead, that structure, like kobject structures, is usually embedded within
  780  * a higher-level representation of the device.
  781  */
  782 struct device {
  783 	struct device		*parent;
  784 
  785 	struct device_private	*p;
  786 
  787 	struct kobject kobj;
  788 	const char		*init_name; /* initial name of the device */
  789 	const struct device_type *type;
  790 
  791 	struct mutex		mutex;	/* mutex to synchronize calls to
  792 					 * its driver.
  793 					 */
  794 
  795 	struct bus_type	*bus;		/* type of bus device is on */
  796 	struct device_driver *driver;	/* which driver has allocated this
  797 					   device */
  798 	void		*platform_data;	/* Platform specific data, device
  799 					   core doesn't touch it */
  800 	void		*driver_data;	/* Driver data, set and get with
  801 					   dev_set/get_drvdata */
  802 	struct dev_pm_info	power;
  803 	struct dev_pm_domain	*pm_domain;
  804 
  805 #ifdef CONFIG_GENERIC_MSI_IRQ_DOMAIN
  806 	struct irq_domain	*msi_domain;
  807 #endif
  808 #ifdef CONFIG_PINCTRL
  809 	struct dev_pin_info	*pins;
  810 #endif
  811 #ifdef CONFIG_GENERIC_MSI_IRQ
  812 	struct list_head	msi_list;
  813 #endif
  814 
  815 #ifdef CONFIG_NUMA
  816 	int		numa_node;	/* NUMA node this device is close to */
  817 #endif
  818 	u64		*dma_mask;	/* dma mask (if dma'able device) */
  819 	u64		coherent_dma_mask;/* Like dma_mask, but for
  820 					     alloc_coherent mappings as
  821 					     not all hardware supports
  822 					     64 bit addresses for consistent
  823 					     allocations such descriptors. */
  824 	unsigned long	dma_pfn_offset;
  825 
  826 	struct device_dma_parameters *dma_parms;
  827 
  828 	struct list_head	dma_pools;	/* dma pools (if dma'ble) */
  829 
  830 	struct dma_coherent_mem	*dma_mem; /* internal for coherent mem
  831 					     override */
  832 #ifdef CONFIG_DMA_CMA
  833 	struct cma *cma_area;		/* contiguous memory area for dma
  834 					   allocations */
  835 #endif
  836 	/* arch specific additions */
  837 	struct dev_archdata	archdata;
  838 
  839 	struct device_node	*of_node; /* associated device tree node */
  840 	struct fwnode_handle	*fwnode; /* firmware device node */
  841 
  842 	dev_t			devt;	/* dev_t, creates the sysfs "dev" */
  843 	u32			id;	/* device instance */
  844 
  845 	spinlock_t		devres_lock;
  846 	struct list_head	devres_head;
  847 
  848 	struct klist_node	knode_class;
  849 	struct class		*class;
  850 	const struct attribute_group **groups;	/* optional groups */
  851 
  852 	void	(*release)(struct device *dev);
  853 	struct iommu_group	*iommu_group;
  854 	struct iommu_fwspec	*iommu_fwspec;
  855 
  856 	bool			offline_disabled:1;
  857 	bool			offline:1;
  858 };
  859 
  860 static inline struct device *kobj_to_dev(struct kobject *kobj)
  861 {
  862 	return container_of(kobj, struct device, kobj);
  863 }
  864 
  865 /* Get the wakeup routines, which depend on struct device */
  866 #include <linux/pm_wakeup.h>
  867 
  868 static inline const char *dev_name(const struct device *dev)
  869 {
  870 	/* Use the init name until the kobject becomes available */
  871 	if (dev->init_name)
  872 		return dev->init_name;
  873 
  874 	return kobject_name(&dev->kobj);
  875 }
  876 
  877 extern __printf(2, 3)
  878 int dev_set_name(struct device *dev, const char *name, ...);
  879 
  880 #ifdef CONFIG_NUMA
  881 static inline int dev_to_node(struct device *dev)
  882 {
  883 	return dev->numa_node;
  884 }
  885 static inline void set_dev_node(struct device *dev, int node)
  886 {
  887 	dev->numa_node = node;
  888 }
  889 #else
  890 static inline int dev_to_node(struct device *dev)
  891 {
  892 	return -1;
  893 }
  894 static inline void set_dev_node(struct device *dev, int node)
  895 {
  896 }
  897 #endif
  898 
  899 static inline struct irq_domain *dev_get_msi_domain(const struct device *dev)
  900 {
  901 #ifdef CONFIG_GENERIC_MSI_IRQ_DOMAIN
  902 	return dev->msi_domain;
  903 #else
  904 	return NULL;
  905 #endif
  906 }
  907 
  908 static inline void dev_set_msi_domain(struct device *dev, struct irq_domain *d)
  909 {
  910 #ifdef CONFIG_GENERIC_MSI_IRQ_DOMAIN
  911 	dev->msi_domain = d;
  912 #endif
  913 }
  914 
  915 static inline void *dev_get_drvdata(const struct device *dev)
  916 {
  917 	return dev->driver_data;
  918 }
  919 
  920 static inline void dev_set_drvdata(struct device *dev, void *data)
  921 {
  922 	dev->driver_data = data;
  923 }
  924 
  925 static inline struct pm_subsys_data *dev_to_psd(struct device *dev)
  926 {
  927 	return dev ? dev->power.subsys_data : NULL;
  928 }
  929 
  930 static inline unsigned int dev_get_uevent_suppress(const struct device *dev)
  931 {
  932 	return dev->kobj.uevent_suppress;
  933 }
  934 
  935 static inline void dev_set_uevent_suppress(struct device *dev, int val)
  936 {
  937 	dev->kobj.uevent_suppress = val;
  938 }
  939 
  940 static inline int device_is_registered(struct device *dev)
  941 {
  942 	return dev->kobj.state_in_sysfs;
  943 }
  944 
  945 static inline void device_enable_async_suspend(struct device *dev)
  946 {
  947 	if (!dev->power.is_prepared)
  948 		dev->power.async_suspend = true;
  949 }
  950 
  951 static inline void device_disable_async_suspend(struct device *dev)
  952 {
  953 	if (!dev->power.is_prepared)
  954 		dev->power.async_suspend = false;
  955 }
  956 
  957 static inline bool device_async_suspend_enabled(struct device *dev)
  958 {
  959 	return !!dev->power.async_suspend;
  960 }
  961 
  962 static inline void dev_pm_syscore_device(struct device *dev, bool val)
  963 {
  964 #ifdef CONFIG_PM_SLEEP
  965 	dev->power.syscore = val;
  966 #endif
  967 }
  968 
  969 static inline void device_lock(struct device *dev)
  970 {
  971 	mutex_lock(&dev->mutex);
  972 }
  973 
  974 static inline int device_lock_interruptible(struct device *dev)
  975 {
  976 	return mutex_lock_interruptible(&dev->mutex);
  977 }
  978 
  979 static inline int device_trylock(struct device *dev)
  980 {
  981 	return mutex_trylock(&dev->mutex);
  982 }
  983 
  984 static inline void device_unlock(struct device *dev)
  985 {
  986 	mutex_unlock(&dev->mutex);
  987 }
  988 
  989 static inline void device_lock_assert(struct device *dev)
  990 {
  991 	lockdep_assert_held(&dev->mutex);
  992 }
  993 
  994 static inline struct device_node *dev_of_node(struct device *dev)
  995 {
  996 	if (!IS_ENABLED(CONFIG_OF))
  997 		return NULL;
  998 	return dev->of_node;
  999 }
 1000 
 1001 void driver_init(void);
 1002 
 1003 /*
 1004  * High level routines for use by the bus drivers
 1005  */
 1006 extern int __must_check device_register(struct device *dev);
 1007 extern void device_unregister(struct device *dev);
 1008 extern void device_initialize(struct device *dev);
 1009 extern int __must_check device_add(struct device *dev);
 1010 extern void device_del(struct device *dev);
 1011 extern int device_for_each_child(struct device *dev, void *data,
 1012 		     int (*fn)(struct device *dev, void *data));
 1013 extern int device_for_each_child_reverse(struct device *dev, void *data,
 1014 		     int (*fn)(struct device *dev, void *data));
 1015 extern struct device *device_find_child(struct device *dev, void *data,
 1016 				int (*match)(struct device *dev, void *data));
 1017 extern int device_rename(struct device *dev, const char *new_name);
 1018 extern int device_move(struct device *dev, struct device *new_parent,
 1019 		       enum dpm_order dpm_order);
 1020 extern const char *device_get_devnode(struct device *dev,
 1021 				      umode_t *mode, kuid_t *uid, kgid_t *gid,
 1022 				      const char **tmp);
 1023 
 1024 static inline bool device_supports_offline(struct device *dev)
 1025 {
 1026 	return dev->bus && dev->bus->offline && dev->bus->online;
 1027 }
 1028 
 1029 extern void lock_device_hotplug(void);
 1030 extern void unlock_device_hotplug(void);
 1031 extern int lock_device_hotplug_sysfs(void);
 1032 extern int device_offline(struct device *dev);
 1033 extern int device_online(struct device *dev);
 1034 extern void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode);
 1035 extern void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode);
 1036 
 1037 /*
 1038  * Root device objects for grouping under /sys/devices
 1039  */
 1040 extern struct device *__root_device_register(const char *name,
 1041 					     struct module *owner);
 1042 
 1043 /* This is a macro to avoid include problems with THIS_MODULE */
 1044 #define root_device_register(name) \
 1045 	__root_device_register(name, THIS_MODULE)
 1046 
 1047 extern void root_device_unregister(struct device *root);
 1048 
 1049 static inline void *dev_get_platdata(const struct device *dev)
 1050 {
 1051 	return dev->platform_data;
 1052 }
 1053 
 1054 /*
 1055  * Manual binding of a device to driver. See drivers/base/bus.c
 1056  * for information on use.
 1057  */
 1058 extern int __must_check device_bind_driver(struct device *dev);
 1059 extern void device_release_driver(struct device *dev);
 1060 extern int  __must_check device_attach(struct device *dev);
 1061 extern int __must_check driver_attach(struct device_driver *drv);
 1062 extern void device_initial_probe(struct device *dev);
 1063 extern int __must_check device_reprobe(struct device *dev);
 1064 
 1065 extern bool device_is_bound(struct device *dev);
 1066 
 1067 /*
 1068  * Easy functions for dynamically creating devices on the fly
 1069  */
 1070 extern __printf(5, 0)
 1071 struct device *device_create_vargs(struct class *cls, struct device *parent,
 1072 				   dev_t devt, void *drvdata,
 1073 				   const char *fmt, va_list vargs);
 1074 extern __printf(5, 6)
 1075 struct device *device_create(struct class *cls, struct device *parent,
 1076 			     dev_t devt, void *drvdata,
 1077 			     const char *fmt, ...);
 1078 extern __printf(6, 7)
 1079 struct device *device_create_with_groups(struct class *cls,
 1080 			     struct device *parent, dev_t devt, void *drvdata,
 1081 			     const struct attribute_group **groups,
 1082 			     const char *fmt, ...);
 1083 extern void device_destroy(struct class *cls, dev_t devt);
 1084 
 1085 /*
 1086  * Platform "fixup" functions - allow the platform to have their say
 1087  * about devices and actions that the general device layer doesn't
 1088  * know about.
 1089  */
 1090 /* Notify platform of device discovery */
 1091 extern int (*platform_notify)(struct device *dev);
 1092 
 1093 extern int (*platform_notify_remove)(struct device *dev);
 1094 
 1095 
 1096 /*
 1097  * get_device - atomically increment the reference count for the device.
 1098  *
 1099  */
 1100 extern struct device *get_device(struct device *dev);
 1101 extern void put_device(struct device *dev);
 1102 
 1103 #ifdef CONFIG_DEVTMPFS
 1104 extern int devtmpfs_create_node(struct device *dev);
 1105 extern int devtmpfs_delete_node(struct device *dev);
 1106 extern int devtmpfs_mount(const char *mntdir);
 1107 #else
 1108 static inline int devtmpfs_create_node(struct device *dev) { return 0; }
 1109 static inline int devtmpfs_delete_node(struct device *dev) { return 0; }
 1110 static inline int devtmpfs_mount(const char *mountpoint) { return 0; }
 1111 #endif
 1112 
 1113 /* drivers/base/power/shutdown.c */
 1114 extern void device_shutdown(void);
 1115 
 1116 /* debugging and troubleshooting/diagnostic helpers. */
 1117 extern const char *dev_driver_string(const struct device *dev);
 1118 
 1119 
 1120 #ifdef CONFIG_PRINTK
 1121 
 1122 extern __printf(3, 0)
 1123 int dev_vprintk_emit(int level, const struct device *dev,
 1124 		     const char *fmt, va_list args);
 1125 extern __printf(3, 4)
 1126 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...);
 1127 
 1128 extern __printf(3, 4)
 1129 void dev_printk(const char *level, const struct device *dev,
 1130 		const char *fmt, ...);
 1131 extern __printf(2, 3)
 1132 void dev_emerg(const struct device *dev, const char *fmt, ...);
 1133 extern __printf(2, 3)
 1134 void dev_alert(const struct device *dev, const char *fmt, ...);
 1135 extern __printf(2, 3)
 1136 void dev_crit(const struct device *dev, const char *fmt, ...);
 1137 extern __printf(2, 3)
 1138 void dev_err(const struct device *dev, const char *fmt, ...);
 1139 extern __printf(2, 3)
 1140 void dev_warn(const struct device *dev, const char *fmt, ...);
 1141 extern __printf(2, 3)
 1142 void dev_notice(const struct device *dev, const char *fmt, ...);
 1143 extern __printf(2, 3)
 1144 void _dev_info(const struct device *dev, const char *fmt, ...);
 1145 
 1146 #else
 1147 
 1148 static inline __printf(3, 0)
 1149 int dev_vprintk_emit(int level, const struct device *dev,
 1150 		     const char *fmt, va_list args)
 1151 { return 0; }
 1152 static inline __printf(3, 4)
 1153 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
 1154 { return 0; }
 1155 
 1156 static inline void __dev_printk(const char *level, const struct device *dev,
 1157 				struct va_format *vaf)
 1158 {}
 1159 static inline __printf(3, 4)
 1160 void dev_printk(const char *level, const struct device *dev,
 1161 		const char *fmt, ...)
 1162 {}
 1163 
 1164 static inline __printf(2, 3)
 1165 void dev_emerg(const struct device *dev, const char *fmt, ...)
 1166 {}
 1167 static inline __printf(2, 3)
 1168 void dev_crit(const struct device *dev, const char *fmt, ...)
 1169 {}
 1170 static inline __printf(2, 3)
 1171 void dev_alert(const struct device *dev, const char *fmt, ...)
 1172 {}
 1173 static inline __printf(2, 3)
 1174 void dev_err(const struct device *dev, const char *fmt, ...)
 1175 {}
 1176 static inline __printf(2, 3)
 1177 void dev_warn(const struct device *dev, const char *fmt, ...)
 1178 {}
 1179 static inline __printf(2, 3)
 1180 void dev_notice(const struct device *dev, const char *fmt, ...)
 1181 {}
 1182 static inline __printf(2, 3)
 1183 void _dev_info(const struct device *dev, const char *fmt, ...)
 1184 {}
 1185 
 1186 #endif
 1187 
 1188 /*
 1189  * Stupid hackaround for existing uses of non-printk uses dev_info
 1190  *
 1191  * Note that the definition of dev_info below is actually _dev_info
 1192  * and a macro is used to avoid redefining dev_info
 1193  */
 1194 
 1195 #define dev_info(dev, fmt, arg...) _dev_info(dev, fmt, ##arg)
 1196 
 1197 #if defined(CONFIG_DYNAMIC_DEBUG)
 1198 #define dev_dbg(dev, format, ...)		     \
 1199 do {						     \
 1200 	dynamic_dev_dbg(dev, format, ##__VA_ARGS__); \
 1201 } while (0)
 1202 #elif defined(DEBUG)
 1203 #define dev_dbg(dev, format, arg...)		\
 1204 	dev_printk(KERN_DEBUG, dev, format, ##arg)
 1205 #else
 1206 #define dev_dbg(dev, format, arg...)				\
 1207 ({								\
 1208 	if (0)							\
 1209 		dev_printk(KERN_DEBUG, dev, format, ##arg);	\
 1210 })
 1211 #endif
 1212 
 1213 #ifdef CONFIG_PRINTK
 1214 #define dev_level_once(dev_level, dev, fmt, ...)			\
 1215 do {									\
 1216 	static bool __print_once __read_mostly;				\
 1217 									\
 1218 	if (!__print_once) {						\
 1219 		__print_once = true;					\
 1220 		dev_level(dev, fmt, ##__VA_ARGS__);			\
 1221 	}								\
 1222 } while (0)
 1223 #else
 1224 #define dev_level_once(dev_level, dev, fmt, ...)			\
 1225 do {									\
 1226 	if (0)								\
 1227 		dev_level(dev, fmt, ##__VA_ARGS__);			\
 1228 } while (0)
 1229 #endif
 1230 
 1231 #define dev_emerg_once(dev, fmt, ...)					\
 1232 	dev_level_once(dev_emerg, dev, fmt, ##__VA_ARGS__)
 1233 #define dev_alert_once(dev, fmt, ...)					\
 1234 	dev_level_once(dev_alert, dev, fmt, ##__VA_ARGS__)
 1235 #define dev_crit_once(dev, fmt, ...)					\
 1236 	dev_level_once(dev_crit, dev, fmt, ##__VA_ARGS__)
 1237 #define dev_err_once(dev, fmt, ...)					\
 1238 	dev_level_once(dev_err, dev, fmt, ##__VA_ARGS__)
 1239 #define dev_warn_once(dev, fmt, ...)					\
 1240 	dev_level_once(dev_warn, dev, fmt, ##__VA_ARGS__)
 1241 #define dev_notice_once(dev, fmt, ...)					\
 1242 	dev_level_once(dev_notice, dev, fmt, ##__VA_ARGS__)
 1243 #define dev_info_once(dev, fmt, ...)					\
 1244 	dev_level_once(dev_info, dev, fmt, ##__VA_ARGS__)
 1245 #define dev_dbg_once(dev, fmt, ...)					\
 1246 	dev_level_once(dev_dbg, dev, fmt, ##__VA_ARGS__)
 1247 
 1248 #define dev_level_ratelimited(dev_level, dev, fmt, ...)			\
 1249 do {									\
 1250 	static DEFINE_RATELIMIT_STATE(_rs,				\
 1251 				      DEFAULT_RATELIMIT_INTERVAL,	\
 1252 				      DEFAULT_RATELIMIT_BURST);		\
 1253 	if (__ratelimit(&_rs))						\
 1254 		dev_level(dev, fmt, ##__VA_ARGS__);			\
 1255 } while (0)
 1256 
 1257 #define dev_emerg_ratelimited(dev, fmt, ...)				\
 1258 	dev_level_ratelimited(dev_emerg, dev, fmt, ##__VA_ARGS__)
 1259 #define dev_alert_ratelimited(dev, fmt, ...)				\
 1260 	dev_level_ratelimited(dev_alert, dev, fmt, ##__VA_ARGS__)
 1261 #define dev_crit_ratelimited(dev, fmt, ...)				\
 1262 	dev_level_ratelimited(dev_crit, dev, fmt, ##__VA_ARGS__)
 1263 #define dev_err_ratelimited(dev, fmt, ...)				\
 1264 	dev_level_ratelimited(dev_err, dev, fmt, ##__VA_ARGS__)
 1265 #define dev_warn_ratelimited(dev, fmt, ...)				\
 1266 	dev_level_ratelimited(dev_warn, dev, fmt, ##__VA_ARGS__)
 1267 #define dev_notice_ratelimited(dev, fmt, ...)				\
 1268 	dev_level_ratelimited(dev_notice, dev, fmt, ##__VA_ARGS__)
 1269 #define dev_info_ratelimited(dev, fmt, ...)				\
 1270 	dev_level_ratelimited(dev_info, dev, fmt, ##__VA_ARGS__)
 1271 #if defined(CONFIG_DYNAMIC_DEBUG)
 1272 /* descriptor check is first to prevent flooding with "callbacks suppressed" */
 1273 #define dev_dbg_ratelimited(dev, fmt, ...)				\
 1274 do {									\
 1275 	static DEFINE_RATELIMIT_STATE(_rs,				\
 1276 				      DEFAULT_RATELIMIT_INTERVAL,	\
 1277 				      DEFAULT_RATELIMIT_BURST);		\
 1278 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt);			\
 1279 	if (unlikely(descriptor.flags & _DPRINTK_FLAGS_PRINT) &&	\
 1280 	    __ratelimit(&_rs))						\
 1281 		__dynamic_dev_dbg(&descriptor, dev, fmt,		\
 1282 				  ##__VA_ARGS__);			\
 1283 } while (0)
 1284 #elif defined(DEBUG)
 1285 #define dev_dbg_ratelimited(dev, fmt, ...)				\
 1286 do {									\
 1287 	static DEFINE_RATELIMIT_STATE(_rs,				\
 1288 				      DEFAULT_RATELIMIT_INTERVAL,	\
 1289 				      DEFAULT_RATELIMIT_BURST);		\
 1290 	if (__ratelimit(&_rs))						\
 1291 		dev_printk(KERN_DEBUG, dev, fmt, ##__VA_ARGS__);	\
 1292 } while (0)
 1293 #else
 1294 #define dev_dbg_ratelimited(dev, fmt, ...)				\
 1295 do {									\
 1296 	if (0)								\
 1297 		dev_printk(KERN_DEBUG, dev, fmt, ##__VA_ARGS__);	\
 1298 } while (0)
 1299 #endif
 1300 
 1301 #ifdef VERBOSE_DEBUG
 1302 #define dev_vdbg	dev_dbg
 1303 #else
 1304 #define dev_vdbg(dev, format, arg...)				\
 1305 ({								\
 1306 	if (0)							\
 1307 		dev_printk(KERN_DEBUG, dev, format, ##arg);	\
 1308 })
 1309 #endif
 1310 
 1311 /*
 1312  * dev_WARN*() acts like dev_printk(), but with the key difference of
 1313  * using WARN/WARN_ONCE to include file/line information and a backtrace.
 1314  */
 1315 #define dev_WARN(dev, format, arg...) \
 1316 	WARN(1, "%s %s: " format, dev_driver_string(dev), dev_name(dev), ## arg);
 1317 
 1318 #define dev_WARN_ONCE(dev, condition, format, arg...) \
 1319 	WARN_ONCE(condition, "%s %s: " format, \
 1320 			dev_driver_string(dev), dev_name(dev), ## arg)
 1321 
 1322 /* Create alias, so I can be autoloaded. */
 1323 #define MODULE_ALIAS_CHARDEV(major,minor) \
 1324 	MODULE_ALIAS("char-major-" __stringify(major) "-" __stringify(minor))
 1325 #define MODULE_ALIAS_CHARDEV_MAJOR(major) \
 1326 	MODULE_ALIAS("char-major-" __stringify(major) "-*")
 1327 
 1328 #ifdef CONFIG_SYSFS_DEPRECATED
 1329 extern long sysfs_deprecated;
 1330 #else
 1331 #define sysfs_deprecated 0
 1332 #endif
 1333 
 1334 /**
 1335  * module_driver() - Helper macro for drivers that don't do anything
 1336  * special in module init/exit. This eliminates a lot of boilerplate.
 1337  * Each module may only use this macro once, and calling it replaces
 1338  * module_init() and module_exit().
 1339  *
 1340  * @__driver: driver name
 1341  * @__register: register function for this driver type
 1342  * @__unregister: unregister function for this driver type
 1343  * @...: Additional arguments to be passed to __register and __unregister.
 1344  *
 1345  * Use this macro to construct bus specific macros for registering
 1346  * drivers, and do not use it on its own.
 1347  */
 1348 #define module_driver(__driver, __register, __unregister, ...) \
 1349 static int __init __driver##_init(void) \
 1350 { \
 1351 	return __register(&(__driver) , ##__VA_ARGS__); \
 1352 } \
 1353 module_init(__driver##_init); \
 1354 static void __exit __driver##_exit(void) \
 1355 { \
 1356 	__unregister(&(__driver) , ##__VA_ARGS__); \
 1357 } \
 1358 module_exit(__driver##_exit);
 1359 
 1360 /**
 1361  * builtin_driver() - Helper macro for drivers that don't do anything
 1362  * special in init and have no exit. This eliminates some boilerplate.
 1363  * Each driver may only use this macro once, and calling it replaces
 1364  * device_initcall (or in some cases, the legacy __initcall).  This is
 1365  * meant to be a direct parallel of module_driver() above but without
 1366  * the __exit stuff that is not used for builtin cases.
 1367  *
 1368  * @__driver: driver name
 1369  * @__register: register function for this driver type
 1370  * @...: Additional arguments to be passed to __register
 1371  *
 1372  * Use this macro to construct bus specific macros for registering
 1373  * drivers, and do not use it on its own.
 1374  */
 1375 #define builtin_driver(__driver, __register, ...) \
 1376 static int __init __driver##_init(void) \
 1377 { \
 1378 	return __register(&(__driver) , ##__VA_ARGS__); \
 1379 } \
 1380 device_initcall(__driver##_init);
 1381 
 1382 #endif /* _DEVICE_H_ */           1 #ifndef _LINUX_DMA_MAPPING_H
    2 #define _LINUX_DMA_MAPPING_H
    3 
    4 #include <linux/sizes.h>
    5 #include <linux/string.h>
    6 #include <linux/device.h>
    7 #include <linux/err.h>
    8 #include <linux/dma-debug.h>
    9 #include <linux/dma-direction.h>
   10 #include <linux/scatterlist.h>
   11 #include <linux/kmemcheck.h>
   12 #include <linux/bug.h>
   13 
   14 /**
   15  * List of possible attributes associated with a DMA mapping. The semantics
   16  * of each attribute should be defined in Documentation/DMA-attributes.txt.
   17  *
   18  * DMA_ATTR_WRITE_BARRIER: DMA to a memory region with this attribute
   19  * forces all pending DMA writes to complete.
   20  */
   21 #define DMA_ATTR_WRITE_BARRIER		(1UL << 0)
   22 /*
   23  * DMA_ATTR_WEAK_ORDERING: Specifies that reads and writes to the mapping
   24  * may be weakly ordered, that is that reads and writes may pass each other.
   25  */
   26 #define DMA_ATTR_WEAK_ORDERING		(1UL << 1)
   27 /*
   28  * DMA_ATTR_WRITE_COMBINE: Specifies that writes to the mapping may be
   29  * buffered to improve performance.
   30  */
   31 #define DMA_ATTR_WRITE_COMBINE		(1UL << 2)
   32 /*
   33  * DMA_ATTR_NON_CONSISTENT: Lets the platform to choose to return either
   34  * consistent or non-consistent memory as it sees fit.
   35  */
   36 #define DMA_ATTR_NON_CONSISTENT		(1UL << 3)
   37 /*
   38  * DMA_ATTR_NO_KERNEL_MAPPING: Lets the platform to avoid creating a kernel
   39  * virtual mapping for the allocated buffer.
   40  */
   41 #define DMA_ATTR_NO_KERNEL_MAPPING	(1UL << 4)
   42 /*
   43  * DMA_ATTR_SKIP_CPU_SYNC: Allows platform code to skip synchronization of
   44  * the CPU cache for the given buffer assuming that it has been already
   45  * transferred to 'device' domain.
   46  */
   47 #define DMA_ATTR_SKIP_CPU_SYNC		(1UL << 5)
   48 /*
   49  * DMA_ATTR_FORCE_CONTIGUOUS: Forces contiguous allocation of the buffer
   50  * in physical memory.
   51  */
   52 #define DMA_ATTR_FORCE_CONTIGUOUS	(1UL << 6)
   53 /*
   54  * DMA_ATTR_ALLOC_SINGLE_PAGES: This is a hint to the DMA-mapping subsystem
   55  * that it's probably not worth the time to try to allocate memory to in a way
   56  * that gives better TLB efficiency.
   57  */
   58 #define DMA_ATTR_ALLOC_SINGLE_PAGES	(1UL << 7)
   59 /*
   60  * DMA_ATTR_NO_WARN: This tells the DMA-mapping subsystem to suppress
   61  * allocation failure reports (similarly to __GFP_NOWARN).
   62  */
   63 #define DMA_ATTR_NO_WARN	(1UL << 8)
   64 
   65 /*
   66  * A dma_addr_t can hold any valid DMA or bus address for the platform.
   67  * It can be given to a device to use as a DMA source or target.  A CPU cannot
   68  * reference a dma_addr_t directly because there may be translation between
   69  * its physical address space and the bus address space.
   70  */
   71 struct dma_map_ops {
   72 	void* (*alloc)(struct device *dev, size_t size,
   73 				dma_addr_t *dma_handle, gfp_t gfp,
   74 				unsigned long attrs);
   75 	void (*free)(struct device *dev, size_t size,
   76 			      void *vaddr, dma_addr_t dma_handle,
   77 			      unsigned long attrs);
   78 	int (*mmap)(struct device *, struct vm_area_struct *,
   79 			  void *, dma_addr_t, size_t,
   80 			  unsigned long attrs);
   81 
   82 	int (*get_sgtable)(struct device *dev, struct sg_table *sgt, void *,
   83 			   dma_addr_t, size_t, unsigned long attrs);
   84 
   85 	dma_addr_t (*map_page)(struct device *dev, struct page *page,
   86 			       unsigned long offset, size_t size,
   87 			       enum dma_data_direction dir,
   88 			       unsigned long attrs);
   89 	void (*unmap_page)(struct device *dev, dma_addr_t dma_handle,
   90 			   size_t size, enum dma_data_direction dir,
   91 			   unsigned long attrs);
   92 	/*
   93 	 * map_sg returns 0 on error and a value > 0 on success.
   94 	 * It should never return a value < 0.
   95 	 */
   96 	int (*map_sg)(struct device *dev, struct scatterlist *sg,
   97 		      int nents, enum dma_data_direction dir,
   98 		      unsigned long attrs);
   99 	void (*unmap_sg)(struct device *dev,
  100 			 struct scatterlist *sg, int nents,
  101 			 enum dma_data_direction dir,
  102 			 unsigned long attrs);
  103 	dma_addr_t (*map_resource)(struct device *dev, phys_addr_t phys_addr,
  104 			       size_t size, enum dma_data_direction dir,
  105 			       unsigned long attrs);
  106 	void (*unmap_resource)(struct device *dev, dma_addr_t dma_handle,
  107 			   size_t size, enum dma_data_direction dir,
  108 			   unsigned long attrs);
  109 	void (*sync_single_for_cpu)(struct device *dev,
  110 				    dma_addr_t dma_handle, size_t size,
  111 				    enum dma_data_direction dir);
  112 	void (*sync_single_for_device)(struct device *dev,
  113 				       dma_addr_t dma_handle, size_t size,
  114 				       enum dma_data_direction dir);
  115 	void (*sync_sg_for_cpu)(struct device *dev,
  116 				struct scatterlist *sg, int nents,
  117 				enum dma_data_direction dir);
  118 	void (*sync_sg_for_device)(struct device *dev,
  119 				   struct scatterlist *sg, int nents,
  120 				   enum dma_data_direction dir);
  121 	int (*mapping_error)(struct device *dev, dma_addr_t dma_addr);
  122 	int (*dma_supported)(struct device *dev, u64 mask);
  123 	int (*set_dma_mask)(struct device *dev, u64 mask);
  124 #ifdef ARCH_HAS_DMA_GET_REQUIRED_MASK
  125 	u64 (*get_required_mask)(struct device *dev);
  126 #endif
  127 	int is_phys;
  128 };
  129 
  130 extern struct dma_map_ops dma_noop_ops;
  131 
  132 #define DMA_BIT_MASK(n)	(((n) == 64) ? ~0ULL : ((1ULL<<(n))-1))
  133 
  134 #define DMA_MASK_NONE	0x0ULL
  135 
  136 static inline int valid_dma_direction(int dma_direction)
  137 {
  138 	return ((dma_direction == DMA_BIDIRECTIONAL) ||
  139 		(dma_direction == DMA_TO_DEVICE) ||
  140 		(dma_direction == DMA_FROM_DEVICE));
  141 }
  142 
  143 static inline int is_device_dma_capable(struct device *dev)
  144 {
  145 	return dev->dma_mask != NULL && *dev->dma_mask != DMA_MASK_NONE;
  146 }
  147 
  148 #ifdef CONFIG_HAVE_GENERIC_DMA_COHERENT
  149 /*
  150  * These three functions are only for dma allocator.
  151  * Don't use them in device drivers.
  152  */
  153 int dma_alloc_from_coherent(struct device *dev, ssize_t size,
  154 				       dma_addr_t *dma_handle, void **ret);
  155 int dma_release_from_coherent(struct device *dev, int order, void *vaddr);
  156 
  157 int dma_mmap_from_coherent(struct device *dev, struct vm_area_struct *vma,
  158 			    void *cpu_addr, size_t size, int *ret);
  159 #else
  160 #define dma_alloc_from_coherent(dev, size, handle, ret) (0)
  161 #define dma_release_from_coherent(dev, order, vaddr) (0)
  162 #define dma_mmap_from_coherent(dev, vma, vaddr, order, ret) (0)
  163 #endif /* CONFIG_HAVE_GENERIC_DMA_COHERENT */
  164 
  165 #ifdef CONFIG_HAS_DMA
  166 #include <asm/dma-mapping.h>
  167 #else
  168 /*
  169  * Define the dma api to allow compilation but not linking of
  170  * dma dependent code.  Code that depends on the dma-mapping
  171  * API needs to set 'depends on HAS_DMA' in its Kconfig
  172  */
  173 extern struct dma_map_ops bad_dma_ops;
  174 static inline struct dma_map_ops *get_dma_ops(struct device *dev)
  175 {
  176 	return &bad_dma_ops;
  177 }
  178 #endif
  179 
  180 static inline dma_addr_t dma_map_single_attrs(struct device *dev, void *ptr,
  181 					      size_t size,
  182 					      enum dma_data_direction dir,
  183 					      unsigned long attrs)
  184 {
  185 	struct dma_map_ops *ops = get_dma_ops(dev);
  186 	dma_addr_t addr;
  187 
  188 	kmemcheck_mark_initialized(ptr, size);
  189 	BUG_ON(!valid_dma_direction(dir));
  190 	addr = ops->map_page(dev, virt_to_page(ptr),
  191 			     offset_in_page(ptr), size,
  192 			     dir, attrs);
  193 	debug_dma_map_page(dev, virt_to_page(ptr),
  194 			   offset_in_page(ptr), size,
  195 			   dir, addr, true);
  196 	return addr;
  197 }
  198 
  199 static inline void dma_unmap_single_attrs(struct device *dev, dma_addr_t addr,
  200 					  size_t size,
  201 					  enum dma_data_direction dir,
  202 					  unsigned long attrs)
  203 {
  204 	struct dma_map_ops *ops = get_dma_ops(dev);
  205 
  206 	BUG_ON(!valid_dma_direction(dir));
  207 	if (ops->unmap_page)
  208 		ops->unmap_page(dev, addr, size, dir, attrs);
  209 	debug_dma_unmap_page(dev, addr, size, dir, true);
  210 }
  211 
  212 /*
  213  * dma_maps_sg_attrs returns 0 on error and > 0 on success.
  214  * It should never return a value < 0.
  215  */
  216 static inline int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
  217 				   int nents, enum dma_data_direction dir,
  218 				   unsigned long attrs)
  219 {
  220 	struct dma_map_ops *ops = get_dma_ops(dev);
  221 	int i, ents;
  222 	struct scatterlist *s;
  223 
  224 	for_each_sg(sg, s, nents, i)
  225 		kmemcheck_mark_initialized(sg_virt(s), s->length);
  226 	BUG_ON(!valid_dma_direction(dir));
  227 	ents = ops->map_sg(dev, sg, nents, dir, attrs);
  228 	BUG_ON(ents < 0);
  229 	debug_dma_map_sg(dev, sg, nents, ents, dir);
  230 
  231 	return ents;
  232 }
  233 
  234 static inline void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
  235 				      int nents, enum dma_data_direction dir,
  236 				      unsigned long attrs)
  237 {
  238 	struct dma_map_ops *ops = get_dma_ops(dev);
  239 
  240 	BUG_ON(!valid_dma_direction(dir));
  241 	debug_dma_unmap_sg(dev, sg, nents, dir);
  242 	if (ops->unmap_sg)
  243 		ops->unmap_sg(dev, sg, nents, dir, attrs);
  244 }
  245 
  246 static inline dma_addr_t dma_map_page(struct device *dev, struct page *page,
  247 				      size_t offset, size_t size,
  248 				      enum dma_data_direction dir)
  249 {
  250 	struct dma_map_ops *ops = get_dma_ops(dev);
  251 	dma_addr_t addr;
  252 
  253 	kmemcheck_mark_initialized(page_address(page) + offset, size);
  254 	BUG_ON(!valid_dma_direction(dir));
  255 	addr = ops->map_page(dev, page, offset, size, dir, 0);
  256 	debug_dma_map_page(dev, page, offset, size, dir, addr, false);
  257 
  258 	return addr;
  259 }
  260 
  261 static inline void dma_unmap_page(struct device *dev, dma_addr_t addr,
  262 				  size_t size, enum dma_data_direction dir)
  263 {
  264 	struct dma_map_ops *ops = get_dma_ops(dev);
  265 
  266 	BUG_ON(!valid_dma_direction(dir));
  267 	if (ops->unmap_page)
  268 		ops->unmap_page(dev, addr, size, dir, 0);
  269 	debug_dma_unmap_page(dev, addr, size, dir, false);
  270 }
  271 
  272 static inline dma_addr_t dma_map_resource(struct device *dev,
  273 					  phys_addr_t phys_addr,
  274 					  size_t size,
  275 					  enum dma_data_direction dir,
  276 					  unsigned long attrs)
  277 {
  278 	struct dma_map_ops *ops = get_dma_ops(dev);
  279 	dma_addr_t addr;
  280 
  281 	BUG_ON(!valid_dma_direction(dir));
  282 
  283 	/* Don't allow RAM to be mapped */
  284 	BUG_ON(pfn_valid(PHYS_PFN(phys_addr)));
  285 
  286 	addr = phys_addr;
  287 	if (ops->map_resource)
  288 		addr = ops->map_resource(dev, phys_addr, size, dir, attrs);
  289 
  290 	debug_dma_map_resource(dev, phys_addr, size, dir, addr);
  291 
  292 	return addr;
  293 }
  294 
  295 static inline void dma_unmap_resource(struct device *dev, dma_addr_t addr,
  296 				      size_t size, enum dma_data_direction dir,
  297 				      unsigned long attrs)
  298 {
  299 	struct dma_map_ops *ops = get_dma_ops(dev);
  300 
  301 	BUG_ON(!valid_dma_direction(dir));
  302 	if (ops->unmap_resource)
  303 		ops->unmap_resource(dev, addr, size, dir, attrs);
  304 	debug_dma_unmap_resource(dev, addr, size, dir);
  305 }
  306 
  307 static inline void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr,
  308 					   size_t size,
  309 					   enum dma_data_direction dir)
  310 {
  311 	struct dma_map_ops *ops = get_dma_ops(dev);
  312 
  313 	BUG_ON(!valid_dma_direction(dir));
  314 	if (ops->sync_single_for_cpu)
  315 		ops->sync_single_for_cpu(dev, addr, size, dir);
  316 	debug_dma_sync_single_for_cpu(dev, addr, size, dir);
  317 }
  318 
  319 static inline void dma_sync_single_for_device(struct device *dev,
  320 					      dma_addr_t addr, size_t size,
  321 					      enum dma_data_direction dir)
  322 {
  323 	struct dma_map_ops *ops = get_dma_ops(dev);
  324 
  325 	BUG_ON(!valid_dma_direction(dir));
  326 	if (ops->sync_single_for_device)
  327 		ops->sync_single_for_device(dev, addr, size, dir);
  328 	debug_dma_sync_single_for_device(dev, addr, size, dir);
  329 }
  330 
  331 static inline void dma_sync_single_range_for_cpu(struct device *dev,
  332 						 dma_addr_t addr,
  333 						 unsigned long offset,
  334 						 size_t size,
  335 						 enum dma_data_direction dir)
  336 {
  337 	const struct dma_map_ops *ops = get_dma_ops(dev);
  338 
  339 	BUG_ON(!valid_dma_direction(dir));
  340 	if (ops->sync_single_for_cpu)
  341 		ops->sync_single_for_cpu(dev, addr + offset, size, dir);
  342 	debug_dma_sync_single_range_for_cpu(dev, addr, offset, size, dir);
  343 }
  344 
  345 static inline void dma_sync_single_range_for_device(struct device *dev,
  346 						    dma_addr_t addr,
  347 						    unsigned long offset,
  348 						    size_t size,
  349 						    enum dma_data_direction dir)
  350 {
  351 	const struct dma_map_ops *ops = get_dma_ops(dev);
  352 
  353 	BUG_ON(!valid_dma_direction(dir));
  354 	if (ops->sync_single_for_device)
  355 		ops->sync_single_for_device(dev, addr + offset, size, dir);
  356 	debug_dma_sync_single_range_for_device(dev, addr, offset, size, dir);
  357 }
  358 
  359 static inline void
  360 dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
  361 		    int nelems, enum dma_data_direction dir)
  362 {
  363 	struct dma_map_ops *ops = get_dma_ops(dev);
  364 
  365 	BUG_ON(!valid_dma_direction(dir));
  366 	if (ops->sync_sg_for_cpu)
  367 		ops->sync_sg_for_cpu(dev, sg, nelems, dir);
  368 	debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
  369 }
  370 
  371 static inline void
  372 dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
  373 		       int nelems, enum dma_data_direction dir)
  374 {
  375 	struct dma_map_ops *ops = get_dma_ops(dev);
  376 
  377 	BUG_ON(!valid_dma_direction(dir));
  378 	if (ops->sync_sg_for_device)
  379 		ops->sync_sg_for_device(dev, sg, nelems, dir);
  380 	debug_dma_sync_sg_for_device(dev, sg, nelems, dir);
  381 
  382 }
  383 
  384 #define dma_map_single(d, a, s, r) dma_map_single_attrs(d, a, s, r, 0)
  385 #define dma_unmap_single(d, a, s, r) dma_unmap_single_attrs(d, a, s, r, 0)
  386 #define dma_map_sg(d, s, n, r) dma_map_sg_attrs(d, s, n, r, 0)
  387 #define dma_unmap_sg(d, s, n, r) dma_unmap_sg_attrs(d, s, n, r, 0)
  388 
  389 extern int dma_common_mmap(struct device *dev, struct vm_area_struct *vma,
  390 			   void *cpu_addr, dma_addr_t dma_addr, size_t size);
  391 
  392 void *dma_common_contiguous_remap(struct page *page, size_t size,
  393 			unsigned long vm_flags,
  394 			pgprot_t prot, const void *caller);
  395 
  396 void *dma_common_pages_remap(struct page **pages, size_t size,
  397 			unsigned long vm_flags, pgprot_t prot,
  398 			const void *caller);
  399 void dma_common_free_remap(void *cpu_addr, size_t size, unsigned long vm_flags);
  400 
  401 /**
  402  * dma_mmap_attrs - map a coherent DMA allocation into user space
  403  * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
  404  * @vma: vm_area_struct describing requested user mapping
  405  * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
  406  * @handle: device-view address returned from dma_alloc_attrs
  407  * @size: size of memory originally requested in dma_alloc_attrs
  408  * @attrs: attributes of mapping properties requested in dma_alloc_attrs
  409  *
  410  * Map a coherent DMA buffer previously allocated by dma_alloc_attrs
  411  * into user space.  The coherent DMA buffer must not be freed by the
  412  * driver until the user space mapping has been released.
  413  */
  414 static inline int
  415 dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma, void *cpu_addr,
  416 	       dma_addr_t dma_addr, size_t size, unsigned long attrs)
  417 {
  418 	struct dma_map_ops *ops = get_dma_ops(dev);
  419 	BUG_ON(!ops);
  420 	if (ops->mmap)
  421 		return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
  422 	return dma_common_mmap(dev, vma, cpu_addr, dma_addr, size);
  423 }
  424 
  425 #define dma_mmap_coherent(d, v, c, h, s) dma_mmap_attrs(d, v, c, h, s, 0)
  426 
  427 int
  428 dma_common_get_sgtable(struct device *dev, struct sg_table *sgt,
  429 		       void *cpu_addr, dma_addr_t dma_addr, size_t size);
  430 
  431 static inline int
  432 dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt, void *cpu_addr,
  433 		      dma_addr_t dma_addr, size_t size,
  434 		      unsigned long attrs)
  435 {
  436 	struct dma_map_ops *ops = get_dma_ops(dev);
  437 	BUG_ON(!ops);
  438 	if (ops->get_sgtable)
  439 		return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size,
  440 					attrs);
  441 	return dma_common_get_sgtable(dev, sgt, cpu_addr, dma_addr, size);
  442 }
  443 
  444 #define dma_get_sgtable(d, t, v, h, s) dma_get_sgtable_attrs(d, t, v, h, s, 0)
  445 
  446 #ifndef arch_dma_alloc_attrs
  447 #define arch_dma_alloc_attrs(dev, flag)	(true)
  448 #endif
  449 
  450 static inline void *dma_alloc_attrs(struct device *dev, size_t size,
  451 				       dma_addr_t *dma_handle, gfp_t flag,
  452 				       unsigned long attrs)
  453 {
  454 	struct dma_map_ops *ops = get_dma_ops(dev);
  455 	void *cpu_addr;
  456 
  457 	BUG_ON(!ops);
  458 
  459 	if (dma_alloc_from_coherent(dev, size, dma_handle, &cpu_addr))
  460 		return cpu_addr;
  461 
  462 	if (!arch_dma_alloc_attrs(&dev, &flag))
  463 		return NULL;
  464 	if (!ops->alloc)
  465 		return NULL;
  466 
  467 	cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
  468 	debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr);
  469 	return cpu_addr;
  470 }
  471 
  472 static inline void dma_free_attrs(struct device *dev, size_t size,
  473 				     void *cpu_addr, dma_addr_t dma_handle,
  474 				     unsigned long attrs)
  475 {
  476 	struct dma_map_ops *ops = get_dma_ops(dev);
  477 
  478 	BUG_ON(!ops);
  479 	WARN_ON(irqs_disabled());
  480 
  481 	if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
  482 		return;
  483 
  484 	if (!ops->free || !cpu_addr)
  485 		return;
  486 
  487 	debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
  488 	ops->free(dev, size, cpu_addr, dma_handle, attrs);
  489 }
  490 
  491 static inline void *dma_alloc_coherent(struct device *dev, size_t size,
  492 		dma_addr_t *dma_handle, gfp_t flag)
  493 {
  494 	return dma_alloc_attrs(dev, size, dma_handle, flag, 0);
  495 }
  496 
  497 static inline void dma_free_coherent(struct device *dev, size_t size,
  498 		void *cpu_addr, dma_addr_t dma_handle)
  499 {
  500 	return dma_free_attrs(dev, size, cpu_addr, dma_handle, 0);
  501 }
  502 
  503 static inline void *dma_alloc_noncoherent(struct device *dev, size_t size,
  504 		dma_addr_t *dma_handle, gfp_t gfp)
  505 {
  506 	return dma_alloc_attrs(dev, size, dma_handle, gfp,
  507 			       DMA_ATTR_NON_CONSISTENT);
  508 }
  509 
  510 static inline void dma_free_noncoherent(struct device *dev, size_t size,
  511 		void *cpu_addr, dma_addr_t dma_handle)
  512 {
  513 	dma_free_attrs(dev, size, cpu_addr, dma_handle,
  514 		       DMA_ATTR_NON_CONSISTENT);
  515 }
  516 
  517 static inline int dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
  518 {
  519 	debug_dma_mapping_error(dev, dma_addr);
  520 
  521 	if (get_dma_ops(dev)->mapping_error)
  522 		return get_dma_ops(dev)->mapping_error(dev, dma_addr);
  523 
  524 #ifdef DMA_ERROR_CODE
  525 	return dma_addr == DMA_ERROR_CODE;
  526 #else
  527 	return 0;
  528 #endif
  529 }
  530 
  531 #ifndef HAVE_ARCH_DMA_SUPPORTED
  532 static inline int dma_supported(struct device *dev, u64 mask)
  533 {
  534 	struct dma_map_ops *ops = get_dma_ops(dev);
  535 
  536 	if (!ops)
  537 		return 0;
  538 	if (!ops->dma_supported)
  539 		return 1;
  540 	return ops->dma_supported(dev, mask);
  541 }
  542 #endif
  543 
  544 #ifndef HAVE_ARCH_DMA_SET_MASK
  545 static inline int dma_set_mask(struct device *dev, u64 mask)
  546 {
  547 	struct dma_map_ops *ops = get_dma_ops(dev);
  548 
  549 	if (ops->set_dma_mask)
  550 		return ops->set_dma_mask(dev, mask);
  551 
  552 	if (!dev->dma_mask || !dma_supported(dev, mask))
  553 		return -EIO;
  554 	*dev->dma_mask = mask;
  555 	return 0;
  556 }
  557 #endif
  558 
  559 static inline u64 dma_get_mask(struct device *dev)
  560 {
  561 	if (dev && dev->dma_mask && *dev->dma_mask)
  562 		return *dev->dma_mask;
  563 	return DMA_BIT_MASK(32);
  564 }
  565 
  566 #ifdef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK
  567 int dma_set_coherent_mask(struct device *dev, u64 mask);
  568 #else
  569 static inline int dma_set_coherent_mask(struct device *dev, u64 mask)
  570 {
  571 	if (!dma_supported(dev, mask))
  572 		return -EIO;
  573 	dev->coherent_dma_mask = mask;
  574 	return 0;
  575 }
  576 #endif
  577 
  578 /*
  579  * Set both the DMA mask and the coherent DMA mask to the same thing.
  580  * Note that we don't check the return value from dma_set_coherent_mask()
  581  * as the DMA API guarantees that the coherent DMA mask can be set to
  582  * the same or smaller than the streaming DMA mask.
  583  */
  584 static inline int dma_set_mask_and_coherent(struct device *dev, u64 mask)
  585 {
  586 	int rc = dma_set_mask(dev, mask);
  587 	if (rc == 0)
  588 		dma_set_coherent_mask(dev, mask);
  589 	return rc;
  590 }
  591 
  592 /*
  593  * Similar to the above, except it deals with the case where the device
  594  * does not have dev->dma_mask appropriately setup.
  595  */
  596 static inline int dma_coerce_mask_and_coherent(struct device *dev, u64 mask)
  597 {
  598 	dev->dma_mask = &dev->coherent_dma_mask;
  599 	return dma_set_mask_and_coherent(dev, mask);
  600 }
  601 
  602 extern u64 dma_get_required_mask(struct device *dev);
  603 
  604 #ifndef arch_setup_dma_ops
  605 static inline void arch_setup_dma_ops(struct device *dev, u64 dma_base,
  606 				      u64 size, const struct iommu_ops *iommu,
  607 				      bool coherent) { }
  608 #endif
  609 
  610 #ifndef arch_teardown_dma_ops
  611 static inline void arch_teardown_dma_ops(struct device *dev) { }
  612 #endif
  613 
  614 static inline unsigned int dma_get_max_seg_size(struct device *dev)
  615 {
  616 	if (dev->dma_parms && dev->dma_parms->max_segment_size)
  617 		return dev->dma_parms->max_segment_size;
  618 	return SZ_64K;
  619 }
  620 
  621 static inline unsigned int dma_set_max_seg_size(struct device *dev,
  622 						unsigned int size)
  623 {
  624 	if (dev->dma_parms) {
  625 		dev->dma_parms->max_segment_size = size;
  626 		return 0;
  627 	}
  628 	return -EIO;
  629 }
  630 
  631 static inline unsigned long dma_get_seg_boundary(struct device *dev)
  632 {
  633 	if (dev->dma_parms && dev->dma_parms->segment_boundary_mask)
  634 		return dev->dma_parms->segment_boundary_mask;
  635 	return DMA_BIT_MASK(32);
  636 }
  637 
  638 static inline int dma_set_seg_boundary(struct device *dev, unsigned long mask)
  639 {
  640 	if (dev->dma_parms) {
  641 		dev->dma_parms->segment_boundary_mask = mask;
  642 		return 0;
  643 	}
  644 	return -EIO;
  645 }
  646 
  647 #ifndef dma_max_pfn
  648 static inline unsigned long dma_max_pfn(struct device *dev)
  649 {
  650 	return *dev->dma_mask >> PAGE_SHIFT;
  651 }
  652 #endif
  653 
  654 static inline void *dma_zalloc_coherent(struct device *dev, size_t size,
  655 					dma_addr_t *dma_handle, gfp_t flag)
  656 {
  657 	void *ret = dma_alloc_coherent(dev, size, dma_handle,
  658 				       flag | __GFP_ZERO);
  659 	return ret;
  660 }
  661 
  662 #ifdef CONFIG_HAS_DMA
  663 static inline int dma_get_cache_alignment(void)
  664 {
  665 #ifdef ARCH_DMA_MINALIGN
  666 	return ARCH_DMA_MINALIGN;
  667 #endif
  668 	return 1;
  669 }
  670 #endif
  671 
  672 /* flags for the coherent memory api */
  673 #define	DMA_MEMORY_MAP			0x01
  674 #define DMA_MEMORY_IO			0x02
  675 #define DMA_MEMORY_INCLUDES_CHILDREN	0x04
  676 #define DMA_MEMORY_EXCLUSIVE		0x08
  677 
  678 #ifdef CONFIG_HAVE_GENERIC_DMA_COHERENT
  679 int dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr,
  680 				dma_addr_t device_addr, size_t size, int flags);
  681 void dma_release_declared_memory(struct device *dev);
  682 void *dma_mark_declared_memory_occupied(struct device *dev,
  683 					dma_addr_t device_addr, size_t size);
  684 #else
  685 static inline int
  686 dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr,
  687 			    dma_addr_t device_addr, size_t size, int flags)
  688 {
  689 	return 0;
  690 }
  691 
  692 static inline void
  693 dma_release_declared_memory(struct device *dev)
  694 {
  695 }
  696 
  697 static inline void *
  698 dma_mark_declared_memory_occupied(struct device *dev,
  699 				  dma_addr_t device_addr, size_t size)
  700 {
  701 	return ERR_PTR(-EBUSY);
  702 }
  703 #endif /* CONFIG_HAVE_GENERIC_DMA_COHERENT */
  704 
  705 /*
  706  * Managed DMA API
  707  */
  708 extern void *dmam_alloc_coherent(struct device *dev, size_t size,
  709 				 dma_addr_t *dma_handle, gfp_t gfp);
  710 extern void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
  711 			       dma_addr_t dma_handle);
  712 extern void *dmam_alloc_noncoherent(struct device *dev, size_t size,
  713 				    dma_addr_t *dma_handle, gfp_t gfp);
  714 extern void dmam_free_noncoherent(struct device *dev, size_t size, void *vaddr,
  715 				  dma_addr_t dma_handle);
  716 #ifdef CONFIG_HAVE_GENERIC_DMA_COHERENT
  717 extern int dmam_declare_coherent_memory(struct device *dev,
  718 					phys_addr_t phys_addr,
  719 					dma_addr_t device_addr, size_t size,
  720 					int flags);
  721 extern void dmam_release_declared_memory(struct device *dev);
  722 #else /* CONFIG_HAVE_GENERIC_DMA_COHERENT */
  723 static inline int dmam_declare_coherent_memory(struct device *dev,
  724 				phys_addr_t phys_addr, dma_addr_t device_addr,
  725 				size_t size, gfp_t gfp)
  726 {
  727 	return 0;
  728 }
  729 
  730 static inline void dmam_release_declared_memory(struct device *dev)
  731 {
  732 }
  733 #endif /* CONFIG_HAVE_GENERIC_DMA_COHERENT */
  734 
  735 static inline void *dma_alloc_wc(struct device *dev, size_t size,
  736 				 dma_addr_t *dma_addr, gfp_t gfp)
  737 {
  738 	return dma_alloc_attrs(dev, size, dma_addr, gfp,
  739 			       DMA_ATTR_WRITE_COMBINE);
  740 }
  741 #ifndef dma_alloc_writecombine
  742 #define dma_alloc_writecombine dma_alloc_wc
  743 #endif
  744 
  745 static inline void dma_free_wc(struct device *dev, size_t size,
  746 			       void *cpu_addr, dma_addr_t dma_addr)
  747 {
  748 	return dma_free_attrs(dev, size, cpu_addr, dma_addr,
  749 			      DMA_ATTR_WRITE_COMBINE);
  750 }
  751 #ifndef dma_free_writecombine
  752 #define dma_free_writecombine dma_free_wc
  753 #endif
  754 
  755 static inline int dma_mmap_wc(struct device *dev,
  756 			      struct vm_area_struct *vma,
  757 			      void *cpu_addr, dma_addr_t dma_addr,
  758 			      size_t size)
  759 {
  760 	return dma_mmap_attrs(dev, vma, cpu_addr, dma_addr, size,
  761 			      DMA_ATTR_WRITE_COMBINE);
  762 }
  763 #ifndef dma_mmap_writecombine
  764 #define dma_mmap_writecombine dma_mmap_wc
  765 #endif
  766 
  767 #if defined(CONFIG_NEED_DMA_MAP_STATE) || defined(CONFIG_DMA_API_DEBUG)
  768 #define DEFINE_DMA_UNMAP_ADDR(ADDR_NAME)        dma_addr_t ADDR_NAME
  769 #define DEFINE_DMA_UNMAP_LEN(LEN_NAME)          __u32 LEN_NAME
  770 #define dma_unmap_addr(PTR, ADDR_NAME)           ((PTR)->ADDR_NAME)
  771 #define dma_unmap_addr_set(PTR, ADDR_NAME, VAL)  (((PTR)->ADDR_NAME) = (VAL))
  772 #define dma_unmap_len(PTR, LEN_NAME)             ((PTR)->LEN_NAME)
  773 #define dma_unmap_len_set(PTR, LEN_NAME, VAL)    (((PTR)->LEN_NAME) = (VAL))
  774 #else
  775 #define DEFINE_DMA_UNMAP_ADDR(ADDR_NAME)
  776 #define DEFINE_DMA_UNMAP_LEN(LEN_NAME)
  777 #define dma_unmap_addr(PTR, ADDR_NAME)           (0)
  778 #define dma_unmap_addr_set(PTR, ADDR_NAME, VAL)  do { } while (0)
  779 #define dma_unmap_len(PTR, LEN_NAME)             (0)
  780 #define dma_unmap_len_set(PTR, LEN_NAME, VAL)    do { } while (0)
  781 #endif
  782 
  783 #endif           1 /*
    2  * ioport.h	Definitions of routines for detecting, reserving and
    3  *		allocating system resources.
    4  *
    5  * Authors:	Linus Torvalds
    6  */
    7 
    8 #ifndef _LINUX_IOPORT_H
    9 #define _LINUX_IOPORT_H
   10 
   11 #ifndef __ASSEMBLY__
   12 #include <linux/compiler.h>
   13 #include <linux/types.h>
   14 /*
   15  * Resources are tree-like, allowing
   16  * nesting etc..
   17  */
   18 struct resource {
   19 	resource_size_t start;
   20 	resource_size_t end;
   21 	const char *name;
   22 	unsigned long flags;
   23 	unsigned long desc;
   24 	struct resource *parent, *sibling, *child;
   25 };
   26 
   27 /*
   28  * IO resources have these defined flags.
   29  *
   30  * PCI devices expose these flags to userspace in the "resource" sysfs file,
   31  * so don't move them.
   32  */
   33 #define IORESOURCE_BITS		0x000000ff	/* Bus-specific bits */
   34 
   35 #define IORESOURCE_TYPE_BITS	0x00001f00	/* Resource type */
   36 #define IORESOURCE_IO		0x00000100	/* PCI/ISA I/O ports */
   37 #define IORESOURCE_MEM		0x00000200
   38 #define IORESOURCE_REG		0x00000300	/* Register offsets */
   39 #define IORESOURCE_IRQ		0x00000400
   40 #define IORESOURCE_DMA		0x00000800
   41 #define IORESOURCE_BUS		0x00001000
   42 
   43 #define IORESOURCE_PREFETCH	0x00002000	/* No side effects */
   44 #define IORESOURCE_READONLY	0x00004000
   45 #define IORESOURCE_CACHEABLE	0x00008000
   46 #define IORESOURCE_RANGELENGTH	0x00010000
   47 #define IORESOURCE_SHADOWABLE	0x00020000
   48 
   49 #define IORESOURCE_SIZEALIGN	0x00040000	/* size indicates alignment */
   50 #define IORESOURCE_STARTALIGN	0x00080000	/* start field is alignment */
   51 
   52 #define IORESOURCE_MEM_64	0x00100000
   53 #define IORESOURCE_WINDOW	0x00200000	/* forwarded by bridge */
   54 #define IORESOURCE_MUXED	0x00400000	/* Resource is software muxed */
   55 
   56 #define IORESOURCE_EXT_TYPE_BITS 0x01000000	/* Resource extended types */
   57 #define IORESOURCE_SYSRAM	0x01000000	/* System RAM (modifier) */
   58 
   59 #define IORESOURCE_EXCLUSIVE	0x08000000	/* Userland may not map this resource */
   60 
   61 #define IORESOURCE_DISABLED	0x10000000
   62 #define IORESOURCE_UNSET	0x20000000	/* No address assigned yet */
   63 #define IORESOURCE_AUTO		0x40000000
   64 #define IORESOURCE_BUSY		0x80000000	/* Driver has marked this resource busy */
   65 
   66 /* I/O resource extended types */
   67 #define IORESOURCE_SYSTEM_RAM		(IORESOURCE_MEM|IORESOURCE_SYSRAM)
   68 
   69 /* PnP IRQ specific bits (IORESOURCE_BITS) */
   70 #define IORESOURCE_IRQ_HIGHEDGE		(1<<0)
   71 #define IORESOURCE_IRQ_LOWEDGE		(1<<1)
   72 #define IORESOURCE_IRQ_HIGHLEVEL	(1<<2)
   73 #define IORESOURCE_IRQ_LOWLEVEL		(1<<3)
   74 #define IORESOURCE_IRQ_SHAREABLE	(1<<4)
   75 #define IORESOURCE_IRQ_OPTIONAL 	(1<<5)
   76 
   77 /* PnP DMA specific bits (IORESOURCE_BITS) */
   78 #define IORESOURCE_DMA_TYPE_MASK	(3<<0)
   79 #define IORESOURCE_DMA_8BIT		(0<<0)
   80 #define IORESOURCE_DMA_8AND16BIT	(1<<0)
   81 #define IORESOURCE_DMA_16BIT		(2<<0)
   82 
   83 #define IORESOURCE_DMA_MASTER		(1<<2)
   84 #define IORESOURCE_DMA_BYTE		(1<<3)
   85 #define IORESOURCE_DMA_WORD		(1<<4)
   86 
   87 #define IORESOURCE_DMA_SPEED_MASK	(3<<6)
   88 #define IORESOURCE_DMA_COMPATIBLE	(0<<6)
   89 #define IORESOURCE_DMA_TYPEA		(1<<6)
   90 #define IORESOURCE_DMA_TYPEB		(2<<6)
   91 #define IORESOURCE_DMA_TYPEF		(3<<6)
   92 
   93 /* PnP memory I/O specific bits (IORESOURCE_BITS) */
   94 #define IORESOURCE_MEM_WRITEABLE	(1<<0)	/* dup: IORESOURCE_READONLY */
   95 #define IORESOURCE_MEM_CACHEABLE	(1<<1)	/* dup: IORESOURCE_CACHEABLE */
   96 #define IORESOURCE_MEM_RANGELENGTH	(1<<2)	/* dup: IORESOURCE_RANGELENGTH */
   97 #define IORESOURCE_MEM_TYPE_MASK	(3<<3)
   98 #define IORESOURCE_MEM_8BIT		(0<<3)
   99 #define IORESOURCE_MEM_16BIT		(1<<3)
  100 #define IORESOURCE_MEM_8AND16BIT	(2<<3)
  101 #define IORESOURCE_MEM_32BIT		(3<<3)
  102 #define IORESOURCE_MEM_SHADOWABLE	(1<<5)	/* dup: IORESOURCE_SHADOWABLE */
  103 #define IORESOURCE_MEM_EXPANSIONROM	(1<<6)
  104 
  105 /* PnP I/O specific bits (IORESOURCE_BITS) */
  106 #define IORESOURCE_IO_16BIT_ADDR	(1<<0)
  107 #define IORESOURCE_IO_FIXED		(1<<1)
  108 #define IORESOURCE_IO_SPARSE		(1<<2)
  109 
  110 /* PCI ROM control bits (IORESOURCE_BITS) */
  111 #define IORESOURCE_ROM_ENABLE		(1<<0)	/* ROM is enabled, same as PCI_ROM_ADDRESS_ENABLE */
  112 #define IORESOURCE_ROM_SHADOW		(1<<1)	/* Use RAM image, not ROM BAR */
  113 
  114 /* PCI control bits.  Shares IORESOURCE_BITS with above PCI ROM.  */
  115 #define IORESOURCE_PCI_FIXED		(1<<4)	/* Do not move resource */
  116 #define IORESOURCE_PCI_EA_BEI		(1<<5)	/* BAR Equivalent Indicator */
  117 
  118 /*
  119  * I/O Resource Descriptors
  120  *
  121  * Descriptors are used by walk_iomem_res_desc() and region_intersects()
  122  * for searching a specific resource range in the iomem table.  Assign
  123  * a new descriptor when a resource range supports the search interfaces.
  124  * Otherwise, resource.desc must be set to IORES_DESC_NONE (0).
  125  */
  126 enum {
  127 	IORES_DESC_NONE				= 0,
  128 	IORES_DESC_CRASH_KERNEL			= 1,
  129 	IORES_DESC_ACPI_TABLES			= 2,
  130 	IORES_DESC_ACPI_NV_STORAGE		= 3,
  131 	IORES_DESC_PERSISTENT_MEMORY		= 4,
  132 	IORES_DESC_PERSISTENT_MEMORY_LEGACY	= 5,
  133 };
  134 
  135 /* helpers to define resources */
  136 #define DEFINE_RES_NAMED(_start, _size, _name, _flags)			\
  137 	{								\
  138 		.start = (_start),					\
  139 		.end = (_start) + (_size) - 1,				\
  140 		.name = (_name),					\
  141 		.flags = (_flags),					\
  142 		.desc = IORES_DESC_NONE,				\
  143 	}
  144 
  145 #define DEFINE_RES_IO_NAMED(_start, _size, _name)			\
  146 	DEFINE_RES_NAMED((_start), (_size), (_name), IORESOURCE_IO)
  147 #define DEFINE_RES_IO(_start, _size)					\
  148 	DEFINE_RES_IO_NAMED((_start), (_size), NULL)
  149 
  150 #define DEFINE_RES_MEM_NAMED(_start, _size, _name)			\
  151 	DEFINE_RES_NAMED((_start), (_size), (_name), IORESOURCE_MEM)
  152 #define DEFINE_RES_MEM(_start, _size)					\
  153 	DEFINE_RES_MEM_NAMED((_start), (_size), NULL)
  154 
  155 #define DEFINE_RES_IRQ_NAMED(_irq, _name)				\
  156 	DEFINE_RES_NAMED((_irq), 1, (_name), IORESOURCE_IRQ)
  157 #define DEFINE_RES_IRQ(_irq)						\
  158 	DEFINE_RES_IRQ_NAMED((_irq), NULL)
  159 
  160 #define DEFINE_RES_DMA_NAMED(_dma, _name)				\
  161 	DEFINE_RES_NAMED((_dma), 1, (_name), IORESOURCE_DMA)
  162 #define DEFINE_RES_DMA(_dma)						\
  163 	DEFINE_RES_DMA_NAMED((_dma), NULL)
  164 
  165 /* PC/ISA/whatever - the normal PC address spaces: IO and memory */
  166 extern struct resource ioport_resource;
  167 extern struct resource iomem_resource;
  168 
  169 extern struct resource *request_resource_conflict(struct resource *root, struct resource *new);
  170 extern int request_resource(struct resource *root, struct resource *new);
  171 extern int release_resource(struct resource *new);
  172 void release_child_resources(struct resource *new);
  173 extern void reserve_region_with_split(struct resource *root,
  174 			     resource_size_t start, resource_size_t end,
  175 			     const char *name);
  176 extern struct resource *insert_resource_conflict(struct resource *parent, struct resource *new);
  177 extern int insert_resource(struct resource *parent, struct resource *new);
  178 extern void insert_resource_expand_to_fit(struct resource *root, struct resource *new);
  179 extern int remove_resource(struct resource *old);
  180 extern void arch_remove_reservations(struct resource *avail);
  181 extern int allocate_resource(struct resource *root, struct resource *new,
  182 			     resource_size_t size, resource_size_t min,
  183 			     resource_size_t max, resource_size_t align,
  184 			     resource_size_t (*alignf)(void *,
  185 						       const struct resource *,
  186 						       resource_size_t,
  187 						       resource_size_t),
  188 			     void *alignf_data);
  189 struct resource *lookup_resource(struct resource *root, resource_size_t start);
  190 int adjust_resource(struct resource *res, resource_size_t start,
  191 		    resource_size_t size);
  192 resource_size_t resource_alignment(struct resource *res);
  193 static inline resource_size_t resource_size(const struct resource *res)
  194 {
  195 	return res->end - res->start + 1;
  196 }
  197 static inline unsigned long resource_type(const struct resource *res)
  198 {
  199 	return res->flags & IORESOURCE_TYPE_BITS;
  200 }
  201 static inline unsigned long resource_ext_type(const struct resource *res)
  202 {
  203 	return res->flags & IORESOURCE_EXT_TYPE_BITS;
  204 }
  205 /* True iff r1 completely contains r2 */
  206 static inline bool resource_contains(struct resource *r1, struct resource *r2)
  207 {
  208 	if (resource_type(r1) != resource_type(r2))
  209 		return false;
  210 	if (r1->flags & IORESOURCE_UNSET || r2->flags & IORESOURCE_UNSET)
  211 		return false;
  212 	return r1->start <= r2->start && r1->end >= r2->end;
  213 }
  214 
  215 
  216 /* Convenience shorthand with allocation */
  217 #define request_region(start,n,name)		__request_region(&ioport_resource, (start), (n), (name), 0)
  218 #define request_muxed_region(start,n,name)	__request_region(&ioport_resource, (start), (n), (name), IORESOURCE_MUXED)
  219 #define __request_mem_region(start,n,name, excl) __request_region(&iomem_resource, (start), (n), (name), excl)
  220 #define request_mem_region(start,n,name) __request_region(&iomem_resource, (start), (n), (name), 0)
  221 #define request_mem_region_exclusive(start,n,name) \
  222 	__request_region(&iomem_resource, (start), (n), (name), IORESOURCE_EXCLUSIVE)
  223 #define rename_region(region, newname) do { (region)->name = (newname); } while (0)
  224 
  225 extern struct resource * __request_region(struct resource *,
  226 					resource_size_t start,
  227 					resource_size_t n,
  228 					const char *name, int flags);
  229 
  230 /* Compatibility cruft */
  231 #define release_region(start,n)	__release_region(&ioport_resource, (start), (n))
  232 #define release_mem_region(start,n)	__release_region(&iomem_resource, (start), (n))
  233 
  234 extern void __release_region(struct resource *, resource_size_t,
  235 				resource_size_t);
  236 #ifdef CONFIG_MEMORY_HOTREMOVE
  237 extern int release_mem_region_adjustable(struct resource *, resource_size_t,
  238 				resource_size_t);
  239 #endif
  240 
  241 /* Wrappers for managed devices */
  242 struct device;
  243 
  244 extern int devm_request_resource(struct device *dev, struct resource *root,
  245 				 struct resource *new);
  246 extern void devm_release_resource(struct device *dev, struct resource *new);
  247 
  248 #define devm_request_region(dev,start,n,name) \
  249 	__devm_request_region(dev, &ioport_resource, (start), (n), (name))
  250 #define devm_request_mem_region(dev,start,n,name) \
  251 	__devm_request_region(dev, &iomem_resource, (start), (n), (name))
  252 
  253 extern struct resource * __devm_request_region(struct device *dev,
  254 				struct resource *parent, resource_size_t start,
  255 				resource_size_t n, const char *name);
  256 
  257 #define devm_release_region(dev, start, n) \
  258 	__devm_release_region(dev, &ioport_resource, (start), (n))
  259 #define devm_release_mem_region(dev, start, n) \
  260 	__devm_release_region(dev, &iomem_resource, (start), (n))
  261 
  262 extern void __devm_release_region(struct device *dev, struct resource *parent,
  263 				  resource_size_t start, resource_size_t n);
  264 extern int iomem_map_sanity_check(resource_size_t addr, unsigned long size);
  265 extern int iomem_is_exclusive(u64 addr);
  266 
  267 extern int
  268 walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages,
  269 		void *arg, int (*func)(unsigned long, unsigned long, void *));
  270 extern int
  271 walk_system_ram_res(u64 start, u64 end, void *arg,
  272 		    int (*func)(u64, u64, void *));
  273 extern int
  274 walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start, u64 end,
  275 		    void *arg, int (*func)(u64, u64, void *));
  276 
  277 /* True if any part of r1 overlaps r2 */
  278 static inline bool resource_overlaps(struct resource *r1, struct resource *r2)
  279 {
  280        return (r1->start <= r2->end && r1->end >= r2->start);
  281 }
  282 
  283 
  284 #endif /* __ASSEMBLY__ */
  285 #endif	/* _LINUX_IOPORT_H */           1 /*
    2  * platform_device.h - generic, centralized driver model
    3  *
    4  * Copyright (c) 2001-2003 Patrick Mochel <mochel@osdl.org>
    5  *
    6  * This file is released under the GPLv2
    7  *
    8  * See Documentation/driver-model/ for more information.
    9  */
   10 
   11 #ifndef _PLATFORM_DEVICE_H_
   12 #define _PLATFORM_DEVICE_H_
   13 
   14 #include <linux/device.h>
   15 #include <linux/mod_devicetable.h>
   16 
   17 #define PLATFORM_DEVID_NONE	(-1)
   18 #define PLATFORM_DEVID_AUTO	(-2)
   19 
   20 struct mfd_cell;
   21 struct property_entry;
   22 
   23 struct platform_device {
   24 	const char	*name;
   25 	int		id;
   26 	bool		id_auto;
   27 	struct device	dev;
   28 	u32		num_resources;
   29 	struct resource	*resource;
   30 
   31 	const struct platform_device_id	*id_entry;
   32 	char *driver_override; /* Driver name to force a match */
   33 
   34 	/* MFD cell pointer */
   35 	struct mfd_cell *mfd_cell;
   36 
   37 	/* arch specific additions */
   38 	struct pdev_archdata	archdata;
   39 };
   40 
   41 #define platform_get_device_id(pdev)	((pdev)->id_entry)
   42 
   43 #define to_platform_device(x) container_of((x), struct platform_device, dev)
   44 
   45 extern int platform_device_register(struct platform_device *);
   46 extern void platform_device_unregister(struct platform_device *);
   47 
   48 extern struct bus_type platform_bus_type;
   49 extern struct device platform_bus;
   50 
   51 extern void arch_setup_pdev_archdata(struct platform_device *);
   52 extern struct resource *platform_get_resource(struct platform_device *,
   53 					      unsigned int, unsigned int);
   54 extern int platform_get_irq(struct platform_device *, unsigned int);
   55 extern int platform_irq_count(struct platform_device *);
   56 extern struct resource *platform_get_resource_byname(struct platform_device *,
   57 						     unsigned int,
   58 						     const char *);
   59 extern int platform_get_irq_byname(struct platform_device *, const char *);
   60 extern int platform_add_devices(struct platform_device **, int);
   61 
   62 struct platform_device_info {
   63 		struct device *parent;
   64 		struct fwnode_handle *fwnode;
   65 
   66 		const char *name;
   67 		int id;
   68 
   69 		const struct resource *res;
   70 		unsigned int num_res;
   71 
   72 		const void *data;
   73 		size_t size_data;
   74 		u64 dma_mask;
   75 
   76 		struct property_entry *properties;
   77 };
   78 extern struct platform_device *platform_device_register_full(
   79 		const struct platform_device_info *pdevinfo);
   80 
   81 /**
   82  * platform_device_register_resndata - add a platform-level device with
   83  * resources and platform-specific data
   84  *
   85  * @parent: parent device for the device we're adding
   86  * @name: base name of the device we're adding
   87  * @id: instance id
   88  * @res: set of resources that needs to be allocated for the device
   89  * @num: number of resources
   90  * @data: platform specific data for this platform device
   91  * @size: size of platform specific data
   92  *
   93  * Returns &struct platform_device pointer on success, or ERR_PTR() on error.
   94  */
   95 static inline struct platform_device *platform_device_register_resndata(
   96 		struct device *parent, const char *name, int id,
   97 		const struct resource *res, unsigned int num,
   98 		const void *data, size_t size) {
   99 
  100 	struct platform_device_info pdevinfo = {
  101 		.parent = parent,
  102 		.name = name,
  103 		.id = id,
  104 		.res = res,
  105 		.num_res = num,
  106 		.data = data,
  107 		.size_data = size,
  108 		.dma_mask = 0,
  109 	};
  110 
  111 	return platform_device_register_full(&pdevinfo);
  112 }
  113 
  114 /**
  115  * platform_device_register_simple - add a platform-level device and its resources
  116  * @name: base name of the device we're adding
  117  * @id: instance id
  118  * @res: set of resources that needs to be allocated for the device
  119  * @num: number of resources
  120  *
  121  * This function creates a simple platform device that requires minimal
  122  * resource and memory management. Canned release function freeing memory
  123  * allocated for the device allows drivers using such devices to be
  124  * unloaded without waiting for the last reference to the device to be
  125  * dropped.
  126  *
  127  * This interface is primarily intended for use with legacy drivers which
  128  * probe hardware directly.  Because such drivers create sysfs device nodes
  129  * themselves, rather than letting system infrastructure handle such device
  130  * enumeration tasks, they don't fully conform to the Linux driver model.
  131  * In particular, when such drivers are built as modules, they can't be
  132  * "hotplugged".
  133  *
  134  * Returns &struct platform_device pointer on success, or ERR_PTR() on error.
  135  */
  136 static inline struct platform_device *platform_device_register_simple(
  137 		const char *name, int id,
  138 		const struct resource *res, unsigned int num)
  139 {
  140 	return platform_device_register_resndata(NULL, name, id,
  141 			res, num, NULL, 0);
  142 }
  143 
  144 /**
  145  * platform_device_register_data - add a platform-level device with platform-specific data
  146  * @parent: parent device for the device we're adding
  147  * @name: base name of the device we're adding
  148  * @id: instance id
  149  * @data: platform specific data for this platform device
  150  * @size: size of platform specific data
  151  *
  152  * This function creates a simple platform device that requires minimal
  153  * resource and memory management. Canned release function freeing memory
  154  * allocated for the device allows drivers using such devices to be
  155  * unloaded without waiting for the last reference to the device to be
  156  * dropped.
  157  *
  158  * Returns &struct platform_device pointer on success, or ERR_PTR() on error.
  159  */
  160 static inline struct platform_device *platform_device_register_data(
  161 		struct device *parent, const char *name, int id,
  162 		const void *data, size_t size)
  163 {
  164 	return platform_device_register_resndata(parent, name, id,
  165 			NULL, 0, data, size);
  166 }
  167 
  168 extern struct platform_device *platform_device_alloc(const char *name, int id);
  169 extern int platform_device_add_resources(struct platform_device *pdev,
  170 					 const struct resource *res,
  171 					 unsigned int num);
  172 extern int platform_device_add_data(struct platform_device *pdev,
  173 				    const void *data, size_t size);
  174 extern int platform_device_add_properties(struct platform_device *pdev,
  175 					  struct property_entry *properties);
  176 extern int platform_device_add(struct platform_device *pdev);
  177 extern void platform_device_del(struct platform_device *pdev);
  178 extern void platform_device_put(struct platform_device *pdev);
  179 
  180 struct platform_driver {
  181 	int (*probe)(struct platform_device *);
  182 	int (*remove)(struct platform_device *);
  183 	void (*shutdown)(struct platform_device *);
  184 	int (*suspend)(struct platform_device *, pm_message_t state);
  185 	int (*resume)(struct platform_device *);
  186 	struct device_driver driver;
  187 	const struct platform_device_id *id_table;
  188 	bool prevent_deferred_probe;
  189 };
  190 
  191 #define to_platform_driver(drv)	(container_of((drv), struct platform_driver, \
  192 				 driver))
  193 
  194 /*
  195  * use a macro to avoid include chaining to get THIS_MODULE
  196  */
  197 #define platform_driver_register(drv) \
  198 	__platform_driver_register(drv, THIS_MODULE)
  199 extern int __platform_driver_register(struct platform_driver *,
  200 					struct module *);
  201 extern void platform_driver_unregister(struct platform_driver *);
  202 
  203 /* non-hotpluggable platform devices may use this so that probe() and
  204  * its support may live in __init sections, conserving runtime memory.
  205  */
  206 #define platform_driver_probe(drv, probe) \
  207 	__platform_driver_probe(drv, probe, THIS_MODULE)
  208 extern int __platform_driver_probe(struct platform_driver *driver,
  209 		int (*probe)(struct platform_device *), struct module *module);
  210 
  211 static inline void *platform_get_drvdata(const struct platform_device *pdev)
  212 {
  213 	return dev_get_drvdata(&pdev->dev);
  214 }
  215 
  216 static inline void platform_set_drvdata(struct platform_device *pdev,
  217 					void *data)
  218 {
  219 	dev_set_drvdata(&pdev->dev, data);
  220 }
  221 
  222 /* module_platform_driver() - Helper macro for drivers that don't do
  223  * anything special in module init/exit.  This eliminates a lot of
  224  * boilerplate.  Each module may only use this macro once, and
  225  * calling it replaces module_init() and module_exit()
  226  */
  227 #define module_platform_driver(__platform_driver) \
  228 	module_driver(__platform_driver, platform_driver_register, \
  229 			platform_driver_unregister)
  230 
  231 /* builtin_platform_driver() - Helper macro for builtin drivers that
  232  * don't do anything special in driver init.  This eliminates some
  233  * boilerplate.  Each driver may only use this macro once, and
  234  * calling it replaces device_initcall().  Note this is meant to be
  235  * a parallel of module_platform_driver() above, but w/o _exit stuff.
  236  */
  237 #define builtin_platform_driver(__platform_driver) \
  238 	builtin_driver(__platform_driver, platform_driver_register)
  239 
  240 /* module_platform_driver_probe() - Helper macro for drivers that don't do
  241  * anything special in module init/exit.  This eliminates a lot of
  242  * boilerplate.  Each module may only use this macro once, and
  243  * calling it replaces module_init() and module_exit()
  244  */
  245 #define module_platform_driver_probe(__platform_driver, __platform_probe) \
  246 static int __init __platform_driver##_init(void) \
  247 { \
  248 	return platform_driver_probe(&(__platform_driver), \
  249 				     __platform_probe);    \
  250 } \
  251 module_init(__platform_driver##_init); \
  252 static void __exit __platform_driver##_exit(void) \
  253 { \
  254 	platform_driver_unregister(&(__platform_driver)); \
  255 } \
  256 module_exit(__platform_driver##_exit);
  257 
  258 /* builtin_platform_driver_probe() - Helper macro for drivers that don't do
  259  * anything special in device init.  This eliminates some boilerplate.  Each
  260  * driver may only use this macro once, and using it replaces device_initcall.
  261  * This is meant to be a parallel of module_platform_driver_probe above, but
  262  * without the __exit parts.
  263  */
  264 #define builtin_platform_driver_probe(__platform_driver, __platform_probe) \
  265 static int __init __platform_driver##_init(void) \
  266 { \
  267 	return platform_driver_probe(&(__platform_driver), \
  268 				     __platform_probe);    \
  269 } \
  270 device_initcall(__platform_driver##_init); \
  271 
  272 #define platform_create_bundle(driver, probe, res, n_res, data, size) \
  273 	__platform_create_bundle(driver, probe, res, n_res, data, size, THIS_MODULE)
  274 extern struct platform_device *__platform_create_bundle(
  275 	struct platform_driver *driver, int (*probe)(struct platform_device *),
  276 	struct resource *res, unsigned int n_res,
  277 	const void *data, size_t size, struct module *module);
  278 
  279 int __platform_register_drivers(struct platform_driver * const *drivers,
  280 				unsigned int count, struct module *owner);
  281 void platform_unregister_drivers(struct platform_driver * const *drivers,
  282 				 unsigned int count);
  283 
  284 #define platform_register_drivers(drivers, count) \
  285 	__platform_register_drivers(drivers, count, THIS_MODULE)
  286 
  287 /* early platform driver interface */
  288 struct early_platform_driver {
  289 	const char *class_str;
  290 	struct platform_driver *pdrv;
  291 	struct list_head list;
  292 	int requested_id;
  293 	char *buffer;
  294 	int bufsize;
  295 };
  296 
  297 #define EARLY_PLATFORM_ID_UNSET -2
  298 #define EARLY_PLATFORM_ID_ERROR -3
  299 
  300 extern int early_platform_driver_register(struct early_platform_driver *epdrv,
  301 					  char *buf);
  302 extern void early_platform_add_devices(struct platform_device **devs, int num);
  303 
  304 static inline int is_early_platform_device(struct platform_device *pdev)
  305 {
  306 	return !pdev->dev.driver;
  307 }
  308 
  309 extern void early_platform_driver_register_all(char *class_str);
  310 extern int early_platform_driver_probe(char *class_str,
  311 				       int nr_probe, int user_only);
  312 extern void early_platform_cleanup(void);
  313 
  314 #define early_platform_init(class_string, platdrv)		\
  315 	early_platform_init_buffer(class_string, platdrv, NULL, 0)
  316 
  317 #ifndef MODULE
  318 #define early_platform_init_buffer(class_string, platdrv, buf, bufsiz)	\
  319 static __initdata struct early_platform_driver early_driver = {		\
  320 	.class_str = class_string,					\
  321 	.buffer = buf,							\
  322 	.bufsize = bufsiz,						\
  323 	.pdrv = platdrv,						\
  324 	.requested_id = EARLY_PLATFORM_ID_UNSET,			\
  325 };									\
  326 static int __init early_platform_driver_setup_func(char *buffer)	\
  327 {									\
  328 	return early_platform_driver_register(&early_driver, buffer);	\
  329 }									\
  330 early_param(class_string, early_platform_driver_setup_func)
  331 #else /* MODULE */
  332 #define early_platform_init_buffer(class_string, platdrv, buf, bufsiz)	\
  333 static inline char *early_platform_driver_setup_func(void)		\
  334 {									\
  335 	return bufsiz ? buf : NULL;					\
  336 }
  337 #endif /* MODULE */
  338 
  339 #ifdef CONFIG_SUSPEND
  340 extern int platform_pm_suspend(struct device *dev);
  341 extern int platform_pm_resume(struct device *dev);
  342 #else
  343 #define platform_pm_suspend		NULL
  344 #define platform_pm_resume		NULL
  345 #endif
  346 
  347 #ifdef CONFIG_HIBERNATE_CALLBACKS
  348 extern int platform_pm_freeze(struct device *dev);
  349 extern int platform_pm_thaw(struct device *dev);
  350 extern int platform_pm_poweroff(struct device *dev);
  351 extern int platform_pm_restore(struct device *dev);
  352 #else
  353 #define platform_pm_freeze		NULL
  354 #define platform_pm_thaw		NULL
  355 #define platform_pm_poweroff		NULL
  356 #define platform_pm_restore		NULL
  357 #endif
  358 
  359 #ifdef CONFIG_PM_SLEEP
  360 #define USE_PLATFORM_PM_SLEEP_OPS \
  361 	.suspend = platform_pm_suspend, \
  362 	.resume = platform_pm_resume, \
  363 	.freeze = platform_pm_freeze, \
  364 	.thaw = platform_pm_thaw, \
  365 	.poweroff = platform_pm_poweroff, \
  366 	.restore = platform_pm_restore,
  367 #else
  368 #define USE_PLATFORM_PM_SLEEP_OPS
  369 #endif
  370 
  371 #endif /* _PLATFORM_DEVICE_H_ */           1 /*
    2  * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
    3  *
    4  * (C) SGI 2006, Christoph Lameter
    5  * 	Cleaned up and restructured to ease the addition of alternative
    6  * 	implementations of SLAB allocators.
    7  * (C) Linux Foundation 2008-2013
    8  *      Unified interface for all slab allocators
    9  */
   10 
   11 #ifndef _LINUX_SLAB_H
   12 #define	_LINUX_SLAB_H
   13 
   14 #include <linux/gfp.h>
   15 #include <linux/types.h>
   16 #include <linux/workqueue.h>
   17 
   18 
   19 /*
   20  * Flags to pass to kmem_cache_create().
   21  * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set.
   22  */
   23 #define SLAB_CONSISTENCY_CHECKS	0x00000100UL	/* DEBUG: Perform (expensive) checks on alloc/free */
   24 #define SLAB_RED_ZONE		0x00000400UL	/* DEBUG: Red zone objs in a cache */
   25 #define SLAB_POISON		0x00000800UL	/* DEBUG: Poison objects */
   26 #define SLAB_HWCACHE_ALIGN	0x00002000UL	/* Align objs on cache lines */
   27 #define SLAB_CACHE_DMA		0x00004000UL	/* Use GFP_DMA memory */
   28 #define SLAB_STORE_USER		0x00010000UL	/* DEBUG: Store the last owner for bug hunting */
   29 #define SLAB_PANIC		0x00040000UL	/* Panic if kmem_cache_create() fails */
   30 /*
   31  * SLAB_DESTROY_BY_RCU - **WARNING** READ THIS!
   32  *
   33  * This delays freeing the SLAB page by a grace period, it does _NOT_
   34  * delay object freeing. This means that if you do kmem_cache_free()
   35  * that memory location is free to be reused at any time. Thus it may
   36  * be possible to see another object there in the same RCU grace period.
   37  *
   38  * This feature only ensures the memory location backing the object
   39  * stays valid, the trick to using this is relying on an independent
   40  * object validation pass. Something like:
   41  *
   42  *  rcu_read_lock()
   43  * again:
   44  *  obj = lockless_lookup(key);
   45  *  if (obj) {
   46  *    if (!try_get_ref(obj)) // might fail for free objects
   47  *      goto again;
   48  *
   49  *    if (obj->key != key) { // not the object we expected
   50  *      put_ref(obj);
   51  *      goto again;
   52  *    }
   53  *  }
   54  *  rcu_read_unlock();
   55  *
   56  * This is useful if we need to approach a kernel structure obliquely,
   57  * from its address obtained without the usual locking. We can lock
   58  * the structure to stabilize it and check it's still at the given address,
   59  * only if we can be sure that the memory has not been meanwhile reused
   60  * for some other kind of object (which our subsystem's lock might corrupt).
   61  *
   62  * rcu_read_lock before reading the address, then rcu_read_unlock after
   63  * taking the spinlock within the structure expected at that address.
   64  */
   65 #define SLAB_DESTROY_BY_RCU	0x00080000UL	/* Defer freeing slabs to RCU */
   66 #define SLAB_MEM_SPREAD		0x00100000UL	/* Spread some memory over cpuset */
   67 #define SLAB_TRACE		0x00200000UL	/* Trace allocations and frees */
   68 
   69 /* Flag to prevent checks on free */
   70 #ifdef CONFIG_DEBUG_OBJECTS
   71 # define SLAB_DEBUG_OBJECTS	0x00400000UL
   72 #else
   73 # define SLAB_DEBUG_OBJECTS	0x00000000UL
   74 #endif
   75 
   76 #define SLAB_NOLEAKTRACE	0x00800000UL	/* Avoid kmemleak tracing */
   77 
   78 /* Don't track use of uninitialized memory */
   79 #ifdef CONFIG_KMEMCHECK
   80 # define SLAB_NOTRACK		0x01000000UL
   81 #else
   82 # define SLAB_NOTRACK		0x00000000UL
   83 #endif
   84 #ifdef CONFIG_FAILSLAB
   85 # define SLAB_FAILSLAB		0x02000000UL	/* Fault injection mark */
   86 #else
   87 # define SLAB_FAILSLAB		0x00000000UL
   88 #endif
   89 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
   90 # define SLAB_ACCOUNT		0x04000000UL	/* Account to memcg */
   91 #else
   92 # define SLAB_ACCOUNT		0x00000000UL
   93 #endif
   94 
   95 #ifdef CONFIG_KASAN
   96 #define SLAB_KASAN		0x08000000UL
   97 #else
   98 #define SLAB_KASAN		0x00000000UL
   99 #endif
  100 
  101 /* The following flags affect the page allocator grouping pages by mobility */
  102 #define SLAB_RECLAIM_ACCOUNT	0x00020000UL		/* Objects are reclaimable */
  103 #define SLAB_TEMPORARY		SLAB_RECLAIM_ACCOUNT	/* Objects are short-lived */
  104 /*
  105  * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
  106  *
  107  * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
  108  *
  109  * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
  110  * Both make kfree a no-op.
  111  */
  112 #define ZERO_SIZE_PTR ((void *)16)
  113 
  114 #define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
  115 				(unsigned long)ZERO_SIZE_PTR)
  116 
  117 #include <linux/kmemleak.h>
  118 #include <linux/kasan.h>
  119 
  120 struct mem_cgroup;
  121 /*
  122  * struct kmem_cache related prototypes
  123  */
  124 void __init kmem_cache_init(void);
  125 bool slab_is_available(void);
  126 
  127 struct kmem_cache *kmem_cache_create(const char *, size_t, size_t,
  128 			unsigned long,
  129 			void (*)(void *));
  130 void kmem_cache_destroy(struct kmem_cache *);
  131 int kmem_cache_shrink(struct kmem_cache *);
  132 
  133 void memcg_create_kmem_cache(struct mem_cgroup *, struct kmem_cache *);
  134 void memcg_deactivate_kmem_caches(struct mem_cgroup *);
  135 void memcg_destroy_kmem_caches(struct mem_cgroup *);
  136 
  137 /*
  138  * Please use this macro to create slab caches. Simply specify the
  139  * name of the structure and maybe some flags that are listed above.
  140  *
  141  * The alignment of the struct determines object alignment. If you
  142  * f.e. add ____cacheline_aligned_in_smp to the struct declaration
  143  * then the objects will be properly aligned in SMP configurations.
  144  */
  145 #define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
  146 		sizeof(struct __struct), __alignof__(struct __struct),\
  147 		(__flags), NULL)
  148 
  149 /*
  150  * Common kmalloc functions provided by all allocators
  151  */
  152 void * __must_check __krealloc(const void *, size_t, gfp_t);
  153 void * __must_check krealloc(const void *, size_t, gfp_t);
  154 void kfree(const void *);
  155 void kzfree(const void *);
  156 size_t ksize(const void *);
  157 
  158 #ifdef CONFIG_HAVE_HARDENED_USERCOPY_ALLOCATOR
  159 const char *__check_heap_object(const void *ptr, unsigned long n,
  160 				struct page *page);
  161 #else
  162 static inline const char *__check_heap_object(const void *ptr,
  163 					      unsigned long n,
  164 					      struct page *page)
  165 {
  166 	return NULL;
  167 }
  168 #endif
  169 
  170 /*
  171  * Some archs want to perform DMA into kmalloc caches and need a guaranteed
  172  * alignment larger than the alignment of a 64-bit integer.
  173  * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that.
  174  */
  175 #if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8
  176 #define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
  177 #define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN
  178 #define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN)
  179 #else
  180 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
  181 #endif
  182 
  183 /*
  184  * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
  185  * Intended for arches that get misalignment faults even for 64 bit integer
  186  * aligned buffers.
  187  */
  188 #ifndef ARCH_SLAB_MINALIGN
  189 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
  190 #endif
  191 
  192 /*
  193  * kmalloc and friends return ARCH_KMALLOC_MINALIGN aligned
  194  * pointers. kmem_cache_alloc and friends return ARCH_SLAB_MINALIGN
  195  * aligned pointers.
  196  */
  197 #define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN)
  198 #define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN)
  199 #define __assume_page_alignment __assume_aligned(PAGE_SIZE)
  200 
  201 /*
  202  * Kmalloc array related definitions
  203  */
  204 
  205 #ifdef CONFIG_SLAB
  206 /*
  207  * The largest kmalloc size supported by the SLAB allocators is
  208  * 32 megabyte (2^25) or the maximum allocatable page order if that is
  209  * less than 32 MB.
  210  *
  211  * WARNING: Its not easy to increase this value since the allocators have
  212  * to do various tricks to work around compiler limitations in order to
  213  * ensure proper constant folding.
  214  */
  215 #define KMALLOC_SHIFT_HIGH	((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
  216 				(MAX_ORDER + PAGE_SHIFT - 1) : 25)
  217 #define KMALLOC_SHIFT_MAX	KMALLOC_SHIFT_HIGH
  218 #ifndef KMALLOC_SHIFT_LOW
  219 #define KMALLOC_SHIFT_LOW	5
  220 #endif
  221 #endif
  222 
  223 #ifdef CONFIG_SLUB
  224 /*
  225  * SLUB directly allocates requests fitting in to an order-1 page
  226  * (PAGE_SIZE*2).  Larger requests are passed to the page allocator.
  227  */
  228 #define KMALLOC_SHIFT_HIGH	(PAGE_SHIFT + 1)
  229 #define KMALLOC_SHIFT_MAX	(MAX_ORDER + PAGE_SHIFT)
  230 #ifndef KMALLOC_SHIFT_LOW
  231 #define KMALLOC_SHIFT_LOW	3
  232 #endif
  233 #endif
  234 
  235 #ifdef CONFIG_SLOB
  236 /*
  237  * SLOB passes all requests larger than one page to the page allocator.
  238  * No kmalloc array is necessary since objects of different sizes can
  239  * be allocated from the same page.
  240  */
  241 #define KMALLOC_SHIFT_HIGH	PAGE_SHIFT
  242 #define KMALLOC_SHIFT_MAX	30
  243 #ifndef KMALLOC_SHIFT_LOW
  244 #define KMALLOC_SHIFT_LOW	3
  245 #endif
  246 #endif
  247 
  248 /* Maximum allocatable size */
  249 #define KMALLOC_MAX_SIZE	(1UL << KMALLOC_SHIFT_MAX)
  250 /* Maximum size for which we actually use a slab cache */
  251 #define KMALLOC_MAX_CACHE_SIZE	(1UL << KMALLOC_SHIFT_HIGH)
  252 /* Maximum order allocatable via the slab allocagtor */
  253 #define KMALLOC_MAX_ORDER	(KMALLOC_SHIFT_MAX - PAGE_SHIFT)
  254 
  255 /*
  256  * Kmalloc subsystem.
  257  */
  258 #ifndef KMALLOC_MIN_SIZE
  259 #define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
  260 #endif
  261 
  262 /*
  263  * This restriction comes from byte sized index implementation.
  264  * Page size is normally 2^12 bytes and, in this case, if we want to use
  265  * byte sized index which can represent 2^8 entries, the size of the object
  266  * should be equal or greater to 2^12 / 2^8 = 2^4 = 16.
  267  * If minimum size of kmalloc is less than 16, we use it as minimum object
  268  * size and give up to use byte sized index.
  269  */
  270 #define SLAB_OBJ_MIN_SIZE      (KMALLOC_MIN_SIZE < 16 ? \
  271                                (KMALLOC_MIN_SIZE) : 16)
  272 
  273 #ifndef CONFIG_SLOB
  274 extern struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
  275 #ifdef CONFIG_ZONE_DMA
  276 extern struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
  277 #endif
  278 
  279 /*
  280  * Figure out which kmalloc slab an allocation of a certain size
  281  * belongs to.
  282  * 0 = zero alloc
  283  * 1 =  65 .. 96 bytes
  284  * 2 = 129 .. 192 bytes
  285  * n = 2^(n-1)+1 .. 2^n
  286  */
  287 static __always_inline int kmalloc_index(size_t size)
  288 {
  289 	if (!size)
  290 		return 0;
  291 
  292 	if (size <= KMALLOC_MIN_SIZE)
  293 		return KMALLOC_SHIFT_LOW;
  294 
  295 	if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
  296 		return 1;
  297 	if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
  298 		return 2;
  299 	if (size <=          8) return 3;
  300 	if (size <=         16) return 4;
  301 	if (size <=         32) return 5;
  302 	if (size <=         64) return 6;
  303 	if (size <=        128) return 7;
  304 	if (size <=        256) return 8;
  305 	if (size <=        512) return 9;
  306 	if (size <=       1024) return 10;
  307 	if (size <=   2 * 1024) return 11;
  308 	if (size <=   4 * 1024) return 12;
  309 	if (size <=   8 * 1024) return 13;
  310 	if (size <=  16 * 1024) return 14;
  311 	if (size <=  32 * 1024) return 15;
  312 	if (size <=  64 * 1024) return 16;
  313 	if (size <= 128 * 1024) return 17;
  314 	if (size <= 256 * 1024) return 18;
  315 	if (size <= 512 * 1024) return 19;
  316 	if (size <= 1024 * 1024) return 20;
  317 	if (size <=  2 * 1024 * 1024) return 21;
  318 	if (size <=  4 * 1024 * 1024) return 22;
  319 	if (size <=  8 * 1024 * 1024) return 23;
  320 	if (size <=  16 * 1024 * 1024) return 24;
  321 	if (size <=  32 * 1024 * 1024) return 25;
  322 	if (size <=  64 * 1024 * 1024) return 26;
  323 	BUG();
  324 
  325 	/* Will never be reached. Needed because the compiler may complain */
  326 	return -1;
  327 }
  328 #endif /* !CONFIG_SLOB */
  329 
  330 void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment __malloc;
  331 void *kmem_cache_alloc(struct kmem_cache *, gfp_t flags) __assume_slab_alignment __malloc;
  332 void kmem_cache_free(struct kmem_cache *, void *);
  333 
  334 /*
  335  * Bulk allocation and freeing operations. These are accelerated in an
  336  * allocator specific way to avoid taking locks repeatedly or building
  337  * metadata structures unnecessarily.
  338  *
  339  * Note that interrupts must be enabled when calling these functions.
  340  */
  341 void kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
  342 int kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
  343 
  344 /*
  345  * Caller must not use kfree_bulk() on memory not originally allocated
  346  * by kmalloc(), because the SLOB allocator cannot handle this.
  347  */
  348 static __always_inline void kfree_bulk(size_t size, void **p)
  349 {
  350 	kmem_cache_free_bulk(NULL, size, p);
  351 }
  352 
  353 #ifdef CONFIG_NUMA
  354 void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment __malloc;
  355 void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node) __assume_slab_alignment __malloc;
  356 #else
  357 static __always_inline void *__kmalloc_node(size_t size, gfp_t flags, int node)
  358 {
  359 	return __kmalloc(size, flags);
  360 }
  361 
  362 static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node)
  363 {
  364 	return kmem_cache_alloc(s, flags);
  365 }
  366 #endif
  367 
  368 #ifdef CONFIG_TRACING
  369 extern void *kmem_cache_alloc_trace(struct kmem_cache *, gfp_t, size_t) __assume_slab_alignment __malloc;
  370 
  371 #ifdef CONFIG_NUMA
  372 extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
  373 					   gfp_t gfpflags,
  374 					   int node, size_t size) __assume_slab_alignment __malloc;
  375 #else
  376 static __always_inline void *
  377 kmem_cache_alloc_node_trace(struct kmem_cache *s,
  378 			      gfp_t gfpflags,
  379 			      int node, size_t size)
  380 {
  381 	return kmem_cache_alloc_trace(s, gfpflags, size);
  382 }
  383 #endif /* CONFIG_NUMA */
  384 
  385 #else /* CONFIG_TRACING */
  386 static __always_inline void *kmem_cache_alloc_trace(struct kmem_cache *s,
  387 		gfp_t flags, size_t size)
  388 {
  389 	void *ret = kmem_cache_alloc(s, flags);
  390 
  391 	kasan_kmalloc(s, ret, size, flags);
  392 	return ret;
  393 }
  394 
  395 static __always_inline void *
  396 kmem_cache_alloc_node_trace(struct kmem_cache *s,
  397 			      gfp_t gfpflags,
  398 			      int node, size_t size)
  399 {
  400 	void *ret = kmem_cache_alloc_node(s, gfpflags, node);
  401 
  402 	kasan_kmalloc(s, ret, size, gfpflags);
  403 	return ret;
  404 }
  405 #endif /* CONFIG_TRACING */
  406 
  407 extern void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc;
  408 
  409 #ifdef CONFIG_TRACING
  410 extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc;
  411 #else
  412 static __always_inline void *
  413 kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
  414 {
  415 	return kmalloc_order(size, flags, order);
  416 }
  417 #endif
  418 
  419 static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
  420 {
  421 	unsigned int order = get_order(size);
  422 	return kmalloc_order_trace(size, flags, order);
  423 }
  424 
  425 /**
  426  * kmalloc - allocate memory
  427  * @size: how many bytes of memory are required.
  428  * @flags: the type of memory to allocate.
  429  *
  430  * kmalloc is the normal method of allocating memory
  431  * for objects smaller than page size in the kernel.
  432  *
  433  * The @flags argument may be one of:
  434  *
  435  * %GFP_USER - Allocate memory on behalf of user.  May sleep.
  436  *
  437  * %GFP_KERNEL - Allocate normal kernel ram.  May sleep.
  438  *
  439  * %GFP_ATOMIC - Allocation will not sleep.  May use emergency pools.
  440  *   For example, use this inside interrupt handlers.
  441  *
  442  * %GFP_HIGHUSER - Allocate pages from high memory.
  443  *
  444  * %GFP_NOIO - Do not do any I/O at all while trying to get memory.
  445  *
  446  * %GFP_NOFS - Do not make any fs calls while trying to get memory.
  447  *
  448  * %GFP_NOWAIT - Allocation will not sleep.
  449  *
  450  * %__GFP_THISNODE - Allocate node-local memory only.
  451  *
  452  * %GFP_DMA - Allocation suitable for DMA.
  453  *   Should only be used for kmalloc() caches. Otherwise, use a
  454  *   slab created with SLAB_DMA.
  455  *
  456  * Also it is possible to set different flags by OR'ing
  457  * in one or more of the following additional @flags:
  458  *
  459  * %__GFP_COLD - Request cache-cold pages instead of
  460  *   trying to return cache-warm pages.
  461  *
  462  * %__GFP_HIGH - This allocation has high priority and may use emergency pools.
  463  *
  464  * %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail
  465  *   (think twice before using).
  466  *
  467  * %__GFP_NORETRY - If memory is not immediately available,
  468  *   then give up at once.
  469  *
  470  * %__GFP_NOWARN - If allocation fails, don't issue any warnings.
  471  *
  472  * %__GFP_REPEAT - If allocation fails initially, try once more before failing.
  473  *
  474  * There are other flags available as well, but these are not intended
  475  * for general use, and so are not documented here. For a full list of
  476  * potential flags, always refer to linux/gfp.h.
  477  */
  478 static __always_inline void *kmalloc(size_t size, gfp_t flags)
  479 {
  480 	if (__builtin_constant_p(size)) {
  481 		if (size > KMALLOC_MAX_CACHE_SIZE)
  482 			return kmalloc_large(size, flags);
  483 #ifndef CONFIG_SLOB
  484 		if (!(flags & GFP_DMA)) {
  485 			int index = kmalloc_index(size);
  486 
  487 			if (!index)
  488 				return ZERO_SIZE_PTR;
  489 
  490 			return kmem_cache_alloc_trace(kmalloc_caches[index],
  491 					flags, size);
  492 		}
  493 #endif
  494 	}
  495 	return __kmalloc(size, flags);
  496 }
  497 
  498 /*
  499  * Determine size used for the nth kmalloc cache.
  500  * return size or 0 if a kmalloc cache for that
  501  * size does not exist
  502  */
  503 static __always_inline int kmalloc_size(int n)
  504 {
  505 #ifndef CONFIG_SLOB
  506 	if (n > 2)
  507 		return 1 << n;
  508 
  509 	if (n == 1 && KMALLOC_MIN_SIZE <= 32)
  510 		return 96;
  511 
  512 	if (n == 2 && KMALLOC_MIN_SIZE <= 64)
  513 		return 192;
  514 #endif
  515 	return 0;
  516 }
  517 
  518 static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
  519 {
  520 #ifndef CONFIG_SLOB
  521 	if (__builtin_constant_p(size) &&
  522 		size <= KMALLOC_MAX_CACHE_SIZE && !(flags & GFP_DMA)) {
  523 		int i = kmalloc_index(size);
  524 
  525 		if (!i)
  526 			return ZERO_SIZE_PTR;
  527 
  528 		return kmem_cache_alloc_node_trace(kmalloc_caches[i],
  529 						flags, node, size);
  530 	}
  531 #endif
  532 	return __kmalloc_node(size, flags, node);
  533 }
  534 
  535 struct memcg_cache_array {
  536 	struct rcu_head rcu;
  537 	struct kmem_cache *entries[0];
  538 };
  539 
  540 /*
  541  * This is the main placeholder for memcg-related information in kmem caches.
  542  * Both the root cache and the child caches will have it. For the root cache,
  543  * this will hold a dynamically allocated array large enough to hold
  544  * information about the currently limited memcgs in the system. To allow the
  545  * array to be accessed without taking any locks, on relocation we free the old
  546  * version only after a grace period.
  547  *
  548  * Child caches will hold extra metadata needed for its operation. Fields are:
  549  *
  550  * @memcg: pointer to the memcg this cache belongs to
  551  * @root_cache: pointer to the global, root cache, this cache was derived from
  552  *
  553  * Both root and child caches of the same kind are linked into a list chained
  554  * through @list.
  555  */
  556 struct memcg_cache_params {
  557 	bool is_root_cache;
  558 	struct list_head list;
  559 	union {
  560 		struct memcg_cache_array __rcu *memcg_caches;
  561 		struct {
  562 			struct mem_cgroup *memcg;
  563 			struct kmem_cache *root_cache;
  564 		};
  565 	};
  566 };
  567 
  568 int memcg_update_all_caches(int num_memcgs);
  569 
  570 /**
  571  * kmalloc_array - allocate memory for an array.
  572  * @n: number of elements.
  573  * @size: element size.
  574  * @flags: the type of memory to allocate (see kmalloc).
  575  */
  576 static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags)
  577 {
  578 	if (size != 0 && n > SIZE_MAX / size)
  579 		return NULL;
  580 	if (__builtin_constant_p(n) && __builtin_constant_p(size))
  581 		return kmalloc(n * size, flags);
  582 	return __kmalloc(n * size, flags);
  583 }
  584 
  585 /**
  586  * kcalloc - allocate memory for an array. The memory is set to zero.
  587  * @n: number of elements.
  588  * @size: element size.
  589  * @flags: the type of memory to allocate (see kmalloc).
  590  */
  591 static inline void *kcalloc(size_t n, size_t size, gfp_t flags)
  592 {
  593 	return kmalloc_array(n, size, flags | __GFP_ZERO);
  594 }
  595 
  596 /*
  597  * kmalloc_track_caller is a special version of kmalloc that records the
  598  * calling function of the routine calling it for slab leak tracking instead
  599  * of just the calling function (confusing, eh?).
  600  * It's useful when the call to kmalloc comes from a widely-used standard
  601  * allocator where we care about the real place the memory allocation
  602  * request comes from.
  603  */
  604 extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long);
  605 #define kmalloc_track_caller(size, flags) \
  606 	__kmalloc_track_caller(size, flags, _RET_IP_)
  607 
  608 #ifdef CONFIG_NUMA
  609 extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long);
  610 #define kmalloc_node_track_caller(size, flags, node) \
  611 	__kmalloc_node_track_caller(size, flags, node, \
  612 			_RET_IP_)
  613 
  614 #else /* CONFIG_NUMA */
  615 
  616 #define kmalloc_node_track_caller(size, flags, node) \
  617 	kmalloc_track_caller(size, flags)
  618 
  619 #endif /* CONFIG_NUMA */
  620 
  621 /*
  622  * Shortcuts
  623  */
  624 static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
  625 {
  626 	return kmem_cache_alloc(k, flags | __GFP_ZERO);
  627 }
  628 
  629 /**
  630  * kzalloc - allocate memory. The memory is set to zero.
  631  * @size: how many bytes of memory are required.
  632  * @flags: the type of memory to allocate (see kmalloc).
  633  */
  634 static inline void *kzalloc(size_t size, gfp_t flags)
  635 {
  636 	return kmalloc(size, flags | __GFP_ZERO);
  637 }
  638 
  639 /**
  640  * kzalloc_node - allocate zeroed memory from a particular memory node.
  641  * @size: how many bytes of memory are required.
  642  * @flags: the type of memory to allocate (see kmalloc).
  643  * @node: memory node from which to allocate
  644  */
  645 static inline void *kzalloc_node(size_t size, gfp_t flags, int node)
  646 {
  647 	return kmalloc_node(size, flags | __GFP_ZERO, node);
  648 }
  649 
  650 unsigned int kmem_cache_size(struct kmem_cache *s);
  651 void __init kmem_cache_init_late(void);
  652 
  653 #if defined(CONFIG_SMP) && defined(CONFIG_SLAB)
  654 int slab_prepare_cpu(unsigned int cpu);
  655 int slab_dead_cpu(unsigned int cpu);
  656 #else
  657 #define slab_prepare_cpu	NULL
  658 #define slab_dead_cpu		NULL
  659 #endif
  660 
  661 #endif	/* _LINUX_SLAB_H */       | 
Here is an explanation of a rule violation arisen while checking your driver against a corresponding kernel.
Note that it may be false positive, i.e. there isn't a real error indeed. Please analyze a given error trace and related source code to understand whether there is an error in your driver.
Error trace column contains a path on which the given rule is violated. You can expand/collapse some entity classes by clicking on corresponding checkboxes in a main menu or in an advanced Others menu. Also you can expand/collapse each particular entity by clicking on +/-. In hovering on some entities you can see some tips. Also the error trace is bound with related source code. Line numbers may be shown as links on the left. You can click on them to open corresponding lines in source code.
Source code column contains a content of files related with the error trace. There is source code of your driver (note that there are some LDV modifications at the end), kernel headers and rule model. Tabs show a currently opened file and other available files. In hovering on them you can see full file names. On clicking a corresponding file content will be shown.
| Ядро | Модуль | Правило | Верификатор | Вердикт | Статус | Время создания | Описание проблемы | 
| linux-4.9-rc1.tar.xz | drivers/uio/uio_pruss.ko | 320_7a | CPAchecker | Bug | Fixed | 2016-11-26 00:59:52 | L0258 | 
Комментарий
Reported: 26 Nov 2016
[В начало]
